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Introduction

• Role of RL in NLP


• Challenges of Multi-reward Optimization


• Different classes of approaches have emerged


• Combining vs Alternate Rewards


• New Multi-armed Bandit (MAB) Algorithms 


• DynaOpt and C-DynaOpt


• Tested on counselor reflection generation.
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Background

• Challenges in Automated Reflections: Accurately mimicking human emotional 
dynamics and language nuances in automated reflections requires a multi-
reward optimization approach.


• Limitations of Current RL Approaches: Static reward systems may lead to 
suboptimal results because they fail to adapt and capture the evolving 
complexities of therapeutic dialogues during training.


• Multi-armed Bandits (MABs): A class of RL approaches that manages the 
exploration and exploitation trade-off, enabling dynamic adjustments to the 
training dynamics based on observed rewards.
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Multi-armed Bandit Approach

• Multi-Armed Bandits (MABs) are often used to navigate the exploration and 
exploitation trade-off in reward adjustment, allowing the model to test various actions 
and learn which are effective.


• In NLP, used for parameter & data selection for a variety of tasks.


• Non-Contextual vs. Contextual Bandits: Contextual Bandits model the relationship 
between, action, content, and reward.


• DynaOpt utilizes non-contextual bandits while C-DynaOpt employs contextual 
bandits.


• Impact on Learning Process: Bandits control adjust reward weight in response to the 
observed rewards, leading to a weight distribution that leads to higher overall rewards.
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Previous Work: DORB (Pasnuru et al, 2020)

• DORB operates by cycling through multiple rewards, optimizing one at a time.


• The key idea is to use multi-armed bandits (MABs) to model the relationship 
between each action (which reward to optimize) and the observed reward 
(after the reward is optimized, what rewards have been obtained?)


• Specifically, DORB employs the Exponential-weight algorithm for Exploration 
and Exploitation (Exp3), which tackles the adversarial bandit problem (Auer et 
al., 2002), to dynamically select from a pool of reward functions during 
training stages.
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Algorithm: DynaOpt and C-DynaOpt
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• Choosing an Action




• Updating the Weights (Exp3)

Proposed Methods: DynaOpt and C-DynaOpt
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• Bandit Reward Computation


• Gamma is a hyperparmeter


• N+1 indexes N actions + No 
Update




Datasets

• Datasets Used: The research employs two key datasets, PAIR (Min et al, 
2022) and CounselChat (Welivita and Pu, 2023), which contain real-world 
counseling dialogues. These datasets provide diverse scenarios for training 
and evaluating the models.
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Models & Algorithms

• Model: t5-base


• Baseline Algorithms


• DORB (Pasnuru et al, 2020): Selectively chooses one reward function at a 
time from a set of available options based on their performance.


• Cross Entropy: Supervised learning baseline


• Round: Cycles through each reward function sequentially, giving each an 
equal opportunity to be tested and applied during training.


• Uniform Weighted: Assigns equal weight to all reward functions
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Reward Metrics

• Reflection Score (Min et al, 2022): Measures how accurately the model's 
generated responses reflect the emotional content and intent of the client's 
statements, assessing the quality of the reflections.


• Fluency: Evaluates the smoothness and naturalness of the language used in 
the model's responses by using perplexity.


• Coherence: Evaluates the logical flow and consistency of the generated 
counselor reflections. Implemented by training a RoBERTa classifier trained to 
detect coherent and incoherent client prompt and counselor response pairs.
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Evaluation Metrics

• Automated Metrics


• Diversity (Li et al., 2016): Gauges the linguistic diversity of the generated 
counselor reflections. 


• Levenshtein Edit Distance: Quantifies the extent to which the model 
successfully avoids verbatim repetition of client words.


• Human Metrics


• Reflection, Coherence, Fluency annotated by two MI experts.
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Automated Evaluation Results

• Performance Comparison: Combine methods outperform Alternate models, particularly in 
Reflection measurements, while both achieve similar Fluency and Coherence.


• Reflection Metrics: Notable improvement in Reflection scores with Combine methods over 
the Cross Entropy baseline; Alternate models show decreased performance in this area.


• Stability of Training: The Round class of models exhibits higher overall variance over 
random runs (reflection variance of 3.59 vs 1.43 & 1.29 of our methods), indicating less 
stability in the training process..
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Human Evaluation Results

• Comparison of Models: Human evaluations confirm that Combine models, 
specifically DynaOpt and C-DynaOpt, outperform the Uniform Weighted model 
in reflection quality.


• Fluency and Coherence: Despite lower scores in automated metrics, DynaOpt 
and C-DynaOpt exhibit superior fluency and coherence in human evaluations, 
suggesting that higher reflection levels enhance the naturalness of responses..
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Overall Results

• Not All Multi-reward Optimization Methods Are Effective for Counselor 
Reflection Generation.


• Methods that combine weights exhibit superior performance compared to 
the Alternate methods (Table 2).


• Comparative Advantage of Our Methods


• DynaOpt and C-DynaOpt outperform not only the Alternate methods but 
also the Uniform Weighted baseline in terms of both automated and human 
reflection levels.
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Bandit Visualization
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Conclusion

• Problem Addressed: Optimizing multiple linguistic rewards in reinforcement 
learning for counselor reflection in motivational interviewing.


• Strategies Explored: Investigated Alternate and Combine approaches, 
enhancing them with bandit-augmented versions.


• Novel Methods: Introduced DynaOpt and C-DynaOpt, which dynamically 
adjust reward weights using multi-armed bandits during training.


• Empirical Findings: Demonstrated that previous approaches failed to improve 
response quality, while DynaOpt and C-DynaOpt surpassed existing 
baselines.
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