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Multifaceted and Complex-Query Datasets

[1] Wang, Jianyou Andre, et al. "Scientific document retrieval using multi-level aspect-based queries." NeurIPS Dataset & Benchmark (2024).
[2] Wachsmuth, et al. "Retrieval of the best counterargument without prior topic knowledge." ACL 2018.
[3] Lin, Kevin, et al. "Decomposing Complex Queries for Tip-of-the-tongue Retrieval." EMNLP 2023.
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Information Retrieval Framework

Query Doc1, Doc2,                …               , Doc100

𝑄 𝐷1,     𝐷2,                  …                 , 𝐷100

𝑓 𝑓 𝑓 𝑓…

Rerank Documents based on Cosine Similarity

𝐷1’,     𝐷2,’                 …                , 𝐷100’



Challenge: not enough queries for training
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Fine-tuning Embedding Models

• Pretrained embedding models need to be fine-tuned to understand these specialized 
IR tasks.

• Not enough queries can be used for training.

• Synthetic query generation via LLM.  (gpt-4-0613)

• But there are issues with the quality of the synthetic queries. 



8-shot Generation 
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Baseline Synthetic Data Generation

• Promptagator [4] sees 8 pairs of example (document, query). 

•Using LLM’s ability of in-context learning, it learns the transformation from document 
to query.

• After seeing the 9th document, Promptagator generates the synthetic 9th query.

• D1, Q1, D2, Q2, …, D8, Q8, D9 => Synthetic Q9

[4] Dai, Zhuyun, et al. "Promptagator: Few-shot Dense Retrieval From 8 Examples." ICLR 2022.
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Superficial Lexical Overlaps

[4] Dai, Zhuyun, et al. "Promptagator: Few-shot Dense Retrieval From 8 Examples." ICLR 2022.
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Real Query
I want to introduce an operation 
planning system for transportation 
authorities and truck companies.  This 
system will coordinate between 
different truck companies and 
transportation authorities … Therefore, 
currently I am thinking about using data 
mining approaches to learn patterns in 
truck routes…Overall, the system should 
also reduce total fuel consumption to 
achieve the goal of energy savings.

Freight transportation …energy 
consumption and the environment…In this 
paper, we review how modern information 
and communication technology supports a 
cyber-physical transportation system 
architecture with an integrated logistic 
system coordinating fleets of trucks 
traveling together in vehicle platoons. 
From the reduced air drag, platooning 
trucks traveling close together can save 
about 10% of their fuel consumption. … A 
realistic case study with 200 heavy-duty 
vehicles performing transportation tasks in 
Sweden is described…

Real Abstract
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Information 
Regularization Methods

We generate the synthetic queries 
with the following regularization 
methods:

• Doc60% reg

• Queryreg ∘ Doc60% reg

• Instrreg

• Queryreg ∘ Instrreg
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Synthetic Query shares too many similarities with Abstract

[4] Dai, Zhuyun, et al. "Promptagator: Few-shot Dense Retrieval From 8 Examples." ICLR 2022.
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Experiment Setup

• Synthetic Data Generation Methods with regularization, and Baseline.

• 3 datasets (DORIS-MAE, ArguAna, WhatsThatBook)
• 4000 real training documents are used to generate 4000 synthetic queries per dataset per method.

• No training document is used in any way during testing.

• 4 pre-trained embedding models
• E5-v2 (0.3B), RoBERTa (0.3B), SimCSE-supervised (0.3B), SPECTER-v2 (0.1B)

• Fine-tuning by contrastive learning using NT-Xent loss.
• 4 NVIDIA A100 GPU, 40GB each. (Batch size 80)

• One epoch per configuration, 20 runs with random seeds, average results. 

• All hyperparameters use default value. 
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DORIS-MAE Experiment Result

Bonferroni adjusted p-value
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WhatsThatBook Results
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ArguAna Results
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Result
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Summary

- Information Retrieval (IR) tasks with multifaceted and complex queries.
- These IR tasks are much harder for embedding models. Not enough training queries.

- Synthetic data (query) generation methods via LLM.

- The effectiveness of synthetic data for fine-tuning IR embedding models.

- The concept of information regularization during synthetic data generation.
- Information regularization reduces superficial lexical correspondence between synthetic 

query and real document. 

- Propose several regularized generation methods that outperform baseline generation 
method.
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