Multimodal Language Models show Evidence of Embodied Simulation

Cameron R. Jones cameron@ucsd.edu @camrobjones

UC San Diego

Sean Trott sttrott@ucsd.edu @Sean_Trott

INTRO DO MLLMs AND HUMANS GROUND LANGUAGE SIMILARLY?

LLMs LACK GROUNDING

HUMANS GROUND VIA EMBODIED SIMULATION DO MLLMS ACTIVATE IMPLICIT FEATURES OF LANGUAGE?

METHOD | WE ADAPTED EMBODIED SIMULATION TASKS FOR MLLMs

Images either matched or mismatched **implicit** sensorimotor features in sentences

MLLMs: CLIP B/32, L/14, H/14 and ImageBind (Radford et al. 2021, Ilharco et al., 2021, Girdhar et al., 2023)

We find the **softmax probability** over the dot product of representations of image-text pairs

RQ: Do MLLMs show an effect of implicit sensorimotor feature match?

MANIPULATION CHECK | ALL **RESULT** MLLMs "SIMULATE" <u>IMPLICIT</u> SHAPE & COLOR, BUT NOT ORIENTATION MLLMs MATCH EXPLICIT LABELS

ImageBind and CLIP ViT H/14 assigned higher probability to images that matched implicit SHAPE and COLOR, but not ORIENTATION.

We ran a manipulation check with explicit text labels (e.g. "a horizontal bat"). All models showed an effect.

DISCUSSION MLLMs AS A MECHANISM FOR SENSORIMOTOR GROUNDING?

ARE MLLMs SIMULATING? Similar results have been treated as evidence of embodied simulation in humans.

OR ARE HUMANS NOT? Alternatively, the results could be treated as a deflationary explanation of human experiments.

TEXT ENCODER BOTTLENECK Sensitivity to explicit labels suggests text encoders are bottleneck to sensitivity for implicit features.

REFERENCES

Barsalou, L. W. (1999). Perceptual symbol systems. Behav Brain Sci, 22(4), 577-660.

Bisk, Y. et al. (2020). Experience grounds language. arXiv:2004.10151.

Connell, L. (2007). Representing object colour in language comprehension. Cognition, 102(3), 476-485.

Girdhar, R. et al. (2023). Imagebind: One embedding space to bind them all. Proc IEEE/CVF Conf Comput Vis Pattern Recognit, 15180-15190.

Harnad, S. (1990). The symbol grounding problem. Physica D, 42(1-3), 335-346.

Ilharco, G. et al. (2021). Openclip. Pecher, D. et al. (2009). Language comprehenders retain implied shape and orientation of objects. Q J Exp Psychol, 62(6), 1108-1114.

Radford, A. et al. (2021). Learning transferable visual models from natural language supervision. Int Conf Mach Learn, 8748-8763.

Stanfield, R. A., & Zwaan, R. A. (2001). The effect of implied orientation derived from verbal context on picture recognition. Psychol Sci, 12(2), 153-156. Zwaan, R. A., & Pecher, D. (2012). Revisiting mental simulation in language comprehension: Six replication attempts. PLoS One, 7(12), e51382.