

L²GC: Lorentzian Linear Graph Convolutional Networks For Node Classification

Qiuyu Liang, Weihua Wang *, Feilong Bao, Guanglai Gao College of Computer Science, Inner Mongolia University

Motivation

- Linear Graph Convolutional Networks are used to classify nodes in graph data.
- Existing linear GCN models don't capture the tree-like structure of real-world datasets.
- Hyperbolic spaces have a greater capacity to represent scale-free or hierarchical structures, which can be used to loow tree like graphs

Experiments

□ Semi-supervised node classification.

(See the paper for a full description)

Space	Туре	Method	Cora	Citeseer	PubMed
			$\delta = 11$	$\delta = 4.5$	$\delta = 3.4$
Euclidean	Nonlinear	GCN(Kipf and Welling, 2017)	81.5	70.3	79
		GAT(Veličković et al., 2018)	83.0	72.5 ± 0.7	79.0 ± 0.3
		SCGNN(Liu et al., 2023)	$\textbf{84.5} \pm \textbf{0.3}$	73.5 ± 0.5	80.8 ± 0.5
	Linear	SGC(Wu et al., 2019)	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0
		DGC(Wang et al., 2021b)	83.3 ± 0.0	73.3 ± 0.1	80.3 ± 0.1
		G ² CN(Li et al., 2022)	82.7	73.8	80.4
Hyperbolic	Nonlinear	HGCN(Chami et al., 2019)	81.3 ± 0.6	70.9 ± 0.6	78.4 ± 0.4
		HAT(Zhang et al., 2021a)	83.1 ± 0.6	71.9 ± 0.6	78.6 ± 0.5
		HYBONET(Chen et al., 2022)	80.2 ± 1.3	-	78.0 ± 1.0
		HGCL(Liu et al., 2022)	82.3 ± 0.5	72.1 ± 0.6	79.14 ± 0.7
	Linear	L^2 GC(ours)	82.4 ± 0.0	$\textbf{74.7} \pm \textbf{0.0}$	$\textbf{81.3} \pm \textbf{0.0}$

to learn tree-like graphs.

Our Method

• Parameter-Free propagation. Get the graph node features from *n*-power propagations. $\mathbf{H}^{(l+1)} = (1 - \alpha)\mathbf{P}\mathbf{H}^{(l)} + \alpha \mathbf{Y}$

- Comparing with models in Euclidean space, our model outperforms the current SOTA linear model G²CN by 1.2% and 0.2% on Citeseer and PubMed.
- Comparing with models in hyperbolic space, our approach is 3.6% and 2.7% better than the SOTA model (HGCL) on Citeseer and PubMed datasets.

□ Fully supervised node classification.

Snaco	Mothod	Disease	Airport
Space	Method	$\delta = 0$	$\delta = 1$
	GCN(2017)	69.7 ± 0.4	81.4 ± 0.6
ন্ম	GAT(2018)	70.4 ± 0.4	81.5 ± 0.3
	SGC(2019)	69.5 ± 0.2	80.6 ± 0.1
	SCGNN(2023)	85.3 ± 0.4	_
	HGCN(2019)	82.8 ± 0.8	90.6 ± 0.2
	HAT(2021a)	83.6 ± 0.9	-
ТЦТ	LGCN(2021b)	84.4 ± 0.8	90.9 ± 1.7
ШШ	HGCL(2022)	93.4 ± 0.8	92.3 ± 1.0
	HYBONET(2022)	$\textbf{96.0} \pm \textbf{1.0}$	90.9 ± 1.4
	L^2 GC(ours)	94.4 ± 0.1	$\textbf{94.0} \pm \textbf{0.1}$

$$\mathbf{H}^{(\gamma)} = (\mathbf{I} - \alpha)\mathbf{P}\mathbf{H}^{(\gamma)} + \alpha\mathbf{A},$$

• Mapping the learned features of graph nodes into hyperbolic space. $H^{n'} = \exp_0^k(H^n)$

$$\exp_0^k : \mathcal{T}_0 \mathbb{L}_k^n \to \mathbb{L}_k^m$$

"k" is the curvature of hyperbolic space.

• Proposing a Lorenrzian linear transformation to capture the tree-like structure of data.

 $\mathrm{H}^{n''} = \mathrm{M}^{\otimes^k}(\mathrm{H}^{n'})$

 $\mathbf{M}^{\otimes^{k}}$ represents Lorenzian linear transformation.

• Graph node prediction.

- Our model achieves 3.4% and 1.8% over HYBONET and HGCL on accuracy.
- L²GC doesn't improve on HYBONET for the Disease dataset, but our model is faster and more stable.
- **D** Efficiency analysis (Left) and Visualisation (Right)

- L²GC is trained faster one or two orders of magnitude than other nonlinear models.
- L²GC can achieve better node classification results.

RESEARCH POSTER PRESENTATION TEMPLATE © 2019

LREC-COLING 2024