Hyperbolic Representations for Prompt Learning
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Continuous prompt tuning has gained significant attention for its ability to train only (" Prompt )—» : ] - 1
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continuous prompts while freezing the language model. This approach greatly E A [ e ] —| | > Outputs
reduces the training time and storage for downstream tasks. In this work, we delve (foput )= -
into the hierarchical relationship between the prompts and downstream text inputs. e S S
In prompt learning, the prefix prompt acts as a module to guide the downstream e
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language model, establishing a hierarchical relationship between the prefix prompt : Pre-training model __ Poincarédisk Linear classifier
and subsequent 1nputs. Furthermore, we explore the benefits of leveraging ; ‘: .
hyperbolic space for modeling hierarchical structures. We project representations of (" Prompt )—> L
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pre-trained models from Euclidean space into hyperbolic space using the Poincar\'{e} i | %i [ mapping —# Quguis
disk which effectively captures the hierarchical relationship between the prompt and S : L
input text. The experiments on natural language understanding (NLU) tasks 1llustrate Meesmm s s s s s S e
that hyperbolic space can model the hierarchical relationship between prompt and
text input. Overall, our main contributions can be summarized as follows: (1) We Figure 2: Overview of our proposed approach. Yellow blocks refer to trainable prompt embeddings.
: : : : : Green blocks are frozen pre-trained language models.
investigate the hierarchical structure between prompts and downstream task inputs,
and propose the utilization of the Poincar\'{e} disk hyperbolic space to model and Results
substantiate this relationship. (2) Experiments on sentence classification, question
answering, and token classification tasks demonstrate the effectiveness of our BoolQ CB COPA MultiRC (F1a)
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Figure 1: Hierarchical structure of prompt learning (Left). Euclidean space and hyperbolic space (Right). cPoincaré 842 834 728 841 628750 B820/893 51.053.0 68.2/73.0

RoBERTa 871 869 762 862 725/784 880940 675714 81.1/845
Methods + Poincaré 88.8 92.1 78.2 89.0 73.0/78.6 88.094.2 68.6/72.3 81.585.0

We first describe the POlIlC&I’jC ball model projection. To map fI‘OII.l the ,EU’Chdean Table 2: Results on named entity recognition (NER) and question answering (QA). PT: Prompt tuning
tangent space to the hyperbolic space, networks operate on the Poincare¢ ball. The PT-2: P-tuningy?2 bold: the best
projection of a Euclidean vector x onto the Poincaré ball 1s given by the exponential
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-
mm C:2
ex = tanh (1) 7% C:3
s C4
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In practice, v 1s commonly set to the origin, simplifying the exponential map to: 60 -
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As shown 1n Fig. 2, we take BERT),,. model as an example. Given the trainable

continuous embeddings [pl D, D } ] s prefix representations the prompt Figure 3: Comparison of curvature for high and low resources datasets. C:1 represents the curvature 1s set
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representation and input text are fed into the BERT;,,. model. Finally, according to

per-task-specific settings, the outputs of hyperbolic space are fed into a linear

classifier to get final logits: Conclusion

OUtPULS faqtyre = BERT) arge ( ) In this paper, we explore the Poincaré disk hyperbolic representations of pre-trained
(4) models in NLU tasks, projecting representations from Euclidean space into

outputs = expo(OUtPULSgeature) hyperbolic space to model the hierarchical relationship between the prompt and
logits = BERTYineqr (OUtputs;,) input text. With high accuracy and efficiency, hyperbolic representations can be an

effective supplement to prompt learning.



