Large Language Models as Financial Data Annotators: A Study on Effectiveness and Efficiency

Toyin Aguda, Suchetha Siddagangappa, Elena Kochkina, Simerjot Kaur, Dongsheng Wang, Charese Smiley, Sameena Shah

toyin.d.aguda@jpmchase.com JPMorgan Al Research

1. Overview

Our study explores the effectiveness of Large Language Models (LLMs) as data annotators in specialized domains, specifically in the financial relation extraction task:

- **1**. Examine if LLMs can replace non-domain expert human annotators.
- **2**. Evaluate 3 different LLMs.
- **3**. Introduce a reliability index (LLM-Rellndex) to measure the trustworthiness

2. Problem Statement

Are the state-of-the-art LLM(s) adequate alternatives for non-domain expert human annotators?

4. Data & Model Selection

Data: **REFinD**(Kaur et al., 2023).

We use the following Large Language Models (LLM):

1. GPT-4

2. PaLM 2

3. MPT Instruct

6. Annotator Performance

5. Model Performance

5-shot

1-shot

Micro-Averaged F1 Score/ Accuracy(%)

2 . Develop	smaller	efficient	mode
--------------------	---------	-----------	------

			Zero-Shot Prompt		Few-Shot Prompt		Few-Shot CoT Prompt	
Annotator	Туре	Temperature Setting	simple prompt	full instruction	1-shot	5-shot	1-shot CoT	5-shot CoT
LLM	GPT-4	0.2	67.4/63.4	68.5/64.6	65.0/60.1	67.6/63.8	64.5/58.4	68.4/ 65.4
	GPT-4	0.7	67.6/63.6	68.4/64.6	65.0/60.0	67.7/63.9	64.6/ 58.4	68.4/ 65.4
	PaLM 2	0.2	62.3/53.9	62.2/53.8	66.4/60.1	66.0/59.2	64.7/55.9	65.6/57.2
	PaLM 2	0.7	64.5/56.0	64.4/56.0	67.3/60.9	68.7 /63.8	64.9/57.4	65.9/59.2
	MPT Instruct	0.2	20.0/21.9	31.1/27.6	18.6/18.0	42.5/36.7	20.1/18.5	45.2/36.1
	MPT Instruct	0.7	20.8/24.7	24.8/27.3	22.7/24.2	30.5/31.1	22.2/23.2	33.9/30.8
	Ensemble (All LLMs)	0.2	65.2/60.1	66.0/60.7	63.9/58.1	68.1/63.3	63.3/56.4	68.8/63.8
	Ensemble (GPT-4 w PaLM 2)	0.2	67.2/63.2	68.6/64.7	65.0/60.1	67.8/ 64.0	64.3/58.1	68.2/65.2
	Ensemble (GPT-4 w MPT Instruct)	0.2	67.2/63.2	68.6/64.7	65.0/60.1	67.8/ 64.0	64.3/58.1	68.2/65.2
	Ensemble (PaLM 2 w MPT Instruct)	0.2	62.6/54.3	61.9/53.6	66.7/60.5	66.1/59.4	64.5/55.7	65.4/56.9
Human	Mturk Annotators	-	-	38.6/40.7	-	-	-	-

7. Model Consistency & Reliability

Inter- Annotator Agreement							
	GPT-4	PaLM 2	MPT				
Random seed run1 vs run2	0.95	0.88	0.395				
Temperature 0.2 vs 0.7	0.95	0.85	0.30				
Zero-shot: simple vs full	0.87	0.88	0.39				
Few-shot: 1- vs 5-shot	0.84	0.79	0.28				
Few-shot CoT: 1- vs 5-shot	0.8	0.82	0.28				
All prompts (Fleiss)	0.83	0.79	0.31				

Full

Instruction

Simple

CoT 1-shot

CoT 5-shot

3. Make use of **sensible hallucinations** for instances labelled as NO/OTHER RELA-TION.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Percentage of Dataset

9. Conclusion

Are the state-of-the-art LLMs adequate alternatives for non-domain expert human annotators?

1. YES! GPT-4 & PaLM 2 significantly outperform crowdsourced annotations with over 29%. 2. In term of Scalability: LLM greatly reduced time and cost associated with annotation.

3. Choice of LLMs: Choose best available models.

4. Expert annotation only where necessary using LLM-Rellindex