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1. Overview

Our study explores the effectiveness of Large
Language Models (LLMs) as data annotators in
specialized domains, specifically in the financial
relation extraction task:

2. Problem Statement

LLM(s) adequate alternatives for non-domain expert human annotators?

Are the

1. Examine if LLMs can replace non-domain
expert human annotators.

2. Evaluate 3 different LLMs.

3. Introduce a reliability index (LLM-
Rellndex) to measure the trustworthiness
of LLM annotations.
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4. Data & Model Selection

Data: (Kaur et al., 2023).
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We use the tfollowing Large Language Models
(LLM):
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6. Annotator Performance
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5. Model Performance
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Majority of: crowdworker labels = incorrect ; LLM labels = incorrect

encountered
by LLMs

Majority of: crowdworker labels = correct ; LLM labels = incorrect

LLMs hallucinated mostly in cases where humans identified the
relation as "No/Other relation". In this category, PaLM 2 has the
most hallucination at 80.7%

7. Model Consistency & Reliability
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instances labelled as NO/OTHER RELA-
TION.

9. Conclusion

Are the state-of-the-art LLMs adequate alternatives for non-domain expert human
annotators?

GPT-4 & PaLM 2 significantly outperform crowdsourced annotations with over 29%.
. In term of Scalability: LLM greatly reduced time and cost associated with annotation.

. Choice of LLMs: Choose best available models.
. Expert annotation only where necessary using
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