LREC-COLING 2024

Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms

Wonkee Lee, Seong-Hwan Heo, Jong-Hyoek Lee

Introduction: Overview

- Challenges in Automatic Post-Editing (APE):
 - The primary bottleneck is the scarcity of "gold-standard" human-edited datasets.

- The Role of Semi-Supervised Learning:
 - Use of synthetic datasets for training, offering a promising solution when training data is limited.

- Suggestion of two methodologies for data-synthesis:
 - MLM Noising: Leveraging MLM method to simulate the inaccuracies of raw machine translated outputs.
 - Selective Corpus Interleaving: Integration of two distinct synthetic datasets by selecting samples that closely resemble the gold data.

Introduction: Automatic Post Editing

- Multi-source sequence-to-sequence problem
 - $(src, mt) \rightarrow pe$
- APE data (Underlying assumption)
 - src and pe should be error-free and semantically equivalent to each other.
 - *pe* is the **minimal correction** of *mt*.

Method

- MLM Noising
 - ✓ Employ masked language model (MLM) to replicate translation errors observable in (src, pe) pairs: $(src, pe) \rightarrow mt$.
 - \checkmark Apply mask-infilling of MLM to parallel texts (*src*, *ref*), yielding our synthetic dataset.
 - ✓ Additionally, process synthetic data (TRANS) for training the MLM noising model.

- 1. Mask *pe* tokens that are aligned to **mistranslated** *mt* tokens $\rightarrow pe_{mask}$
- 2. Provide the **Transformer encoder** with (*src,* pe_{mask}) pairs, and let the model learn to predict the erroneous *mt* token from [MASK]

- Employing Edit-distance alignment (a.k.a Levenshtein distance)
 - Replace or add [MASK] to the *pe* position where the aligned words between *pe* and *mt* are NOT identical.

- Synthetic data made by translation (TRANS)
 - Significant discrepancy in error distribution between TRANS and gold data.
 - Edit(mt, ref) >> Edit(mt, pe)
 - Modify TRANS to resemble the error distribution of gold data, using it as additional training data for MLM noise.

- Determine the error quantity according to the error-rate distribution of gold data
 - Determine **num errors** (*k*) by sampled error rate from gold distribution.
 - Randomly select k tokens from all n ref tokens aligned with erroneous mt tokens at every iteration (thereby covering all possible errors in expectation)

- MLM Inference
 - 1. Determine the error frequency *n* by sampling from the error distribution of the gold data.
 - 2. Select random *n ref* tokens to be masked.
 - 3. Replace masked token by mask-infilling, resulting in synthetic *mt*

Method: Selective Corpus Interleaving

- Motivation
 - TRANS samples with similar error frequency to gold data may better resemble gold data than those generated by MLM noising.
 - Given parallel texts (*src*, *ref*), select *mt* from TRANS if it satisfy $Edit(mt, ref) \approx Edit(mt, pe)$; otherwise, select synthetic *mt* (i.e., \widetilde{mt}) made by MLM noising

- Method (3-sigma rule)
 - For every (*src*, *ref*), select *mt* by

•
$$mt = \begin{cases} mt, & \text{if } |\text{Edit}(mt, ref) - \mu| \le \lambda \sigma \\ \widetilde{mt}, & \text{otherwise} \end{cases}$$

• where μ and σ are the mean and stdv of Edit(mt, pe) from gold data; and $\lambda \in [1, 3]$ is a hyperparameter

Experiments

	Test16		Test17		Test18		Test Avg.	
Approach	TER(↓)	BLEU(↑)	$TER(\downarrow)$	BLEU(↑)	$TER(\downarrow)$	BLEU(↑)	$TER(\downarrow)$	BLEU(↑)
Trans	16.87	73.95	17.30	73.08	17.80	72.41	17.32	73.15
BT-fg	17.26	73.56	17.56	72.78	17.89	72.14	17.57	72.82
ВТ-вд	17.61	73.04	17.60	72.49	18.01	71.89	17.74	72.47
Rand	17.23	73.59	17.61	72.69	17.81	72.38	17.55	72.88
MLM Noising (w/o interleave) MLM Noising (w/ interleave)	16.90 16.71	74.03 74.58	17.31 16.74	72.90 73.79	17.62 17.43	72.43 72.88	17.28 16.96	73.12 73.75

Table 1: Comparative result of different synthetic data used for training

	Test	Avg.	Sample Ratio		
	TER(↓)	BLEU(↑)	MLM	TRANS	
$\lambda = 0 \; (\text{MLM Noising})$	17.32	73.15	100.0%	0.0%	
$\lambda = 1$	17.25	73.26	71.5%	28.5%	
$\lambda = 2$	16.96**	73.75**	41.5%	58.5%	
$\lambda = 3$	17.03**	73.48**	20.8%	79.2%	
$\lambda = \infty \; ({\sf Trans})$	17.28	73.12	0.0%	100.0%	

Table 2: Results of varying hyperparameters for corpus interleaving

- Comparative analysis: our synthetic data vs. existing datasets
 - The model trained on synthetic data generated through our method exhibited the most superior performance compared to the existing datasets.
- Variations of hyperparameters for selective corpus interleaving
 - The model performed optimally when combining approximately half of TRANS and MLM noising datasets, indicating that both approaches their own strengths.

Summary & Conclusion

- The scarcity of training data underscores the importance of semi-supervised learning, which utilizes synthetic data to augment available training resources.
- We introduce MLM noising method, creating synthetic data that accurately mimics the essential characteristics of gold data.
- We suggest selective corpus interleaving method to combines two synthetic datasets, TRANS and our MLM, effectively leveraging their strengths and addressing their limitations.

End of the presentation