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• The capability of an Adapter depends on its intermediate dimension, and 
recent empirical studies [1] suggest that low-dimensional Adapter modules 
can give better performances than high ones. 

• AdaKron combines Adapters [2] with Kronecker Product [3] in a new and 
efficient way. AdaKron is composed of two Down Projection layers, whose 
outputs are then multiplied through Kronecker product.

• By training only 0.55% of parameters, we reach performance on par with 
recent state-of-the-art PEFT methods that require more parameters to train.

• The conventional approach to fine-tuning for downstream tasks requires the 
training of all parameters of a neural model. However, with the recent increase of 
Large Pretrained Language Models reaching billions of parameters, the traditional 
fine-tuning process has become challenging due to large memory requirements. 

• Parameter-efficient Fine-Tuning Techniques have emerged as a new paradigm. 
These methods allow us to train only a fraction of the original model parameters, 
while fine-tuning the model to a specific task and keeping performance levels 
comparable to traditional fine-tuning.

• Improve our approach by incorporating it within a Mixture of Experts 
framework [3] with a linguistic/task-based gating function.

• Inject user-related information into the Adapter to define 
user-specific experts.

• Extending evaluation to Language Generation and Multilingual tasks.

• We compare our method with different PEFT techinques: 

• Houlsby and Pfeiffer Adapter: requires defining and training new 
modules, each of one composed by two linear layers;

• BitFit: requires training only the bias parameters of the model;
• Prefix-Tuning: prepends a sequence of continuous task-specific vectors 

to the input, which are the only trained parameters;
• LoRa: requires training two low-rank matrices to upgrade attention 

weights; 
• UNIPELT: is a combination of the previous methods;
• AdaMix: combines Mixture of Experts (with random routing) and Adapters.

• AdaKron shows on average better performance compared to the full Fine-Tuning, and 
Houlsby Adapter. Moreover, AdaKron achieves an average one-point improvement 
over smaller PEFT methods like BitFit, Prefix-tuning, and LoRA. Interestingly, our 
approach also achieves better performance than UNIPELT, which uses twice the 
amount of parameters compared to AdaKron.
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Results on GLUE development set with BERT-base.
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