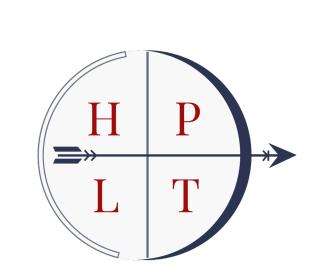
Can Machine Translation Bridge Multilingual Pretraining and Cross-lingual Transfer Learning?



Shaoxiong Ji ¹ Timothee Mickus ¹ Vincent Segonne ² Jörg Tiedemann ¹

¹ University of Helsinki ² Universite Grenoble Alpes

firstname.lastname@helsinki.fi

Research questions

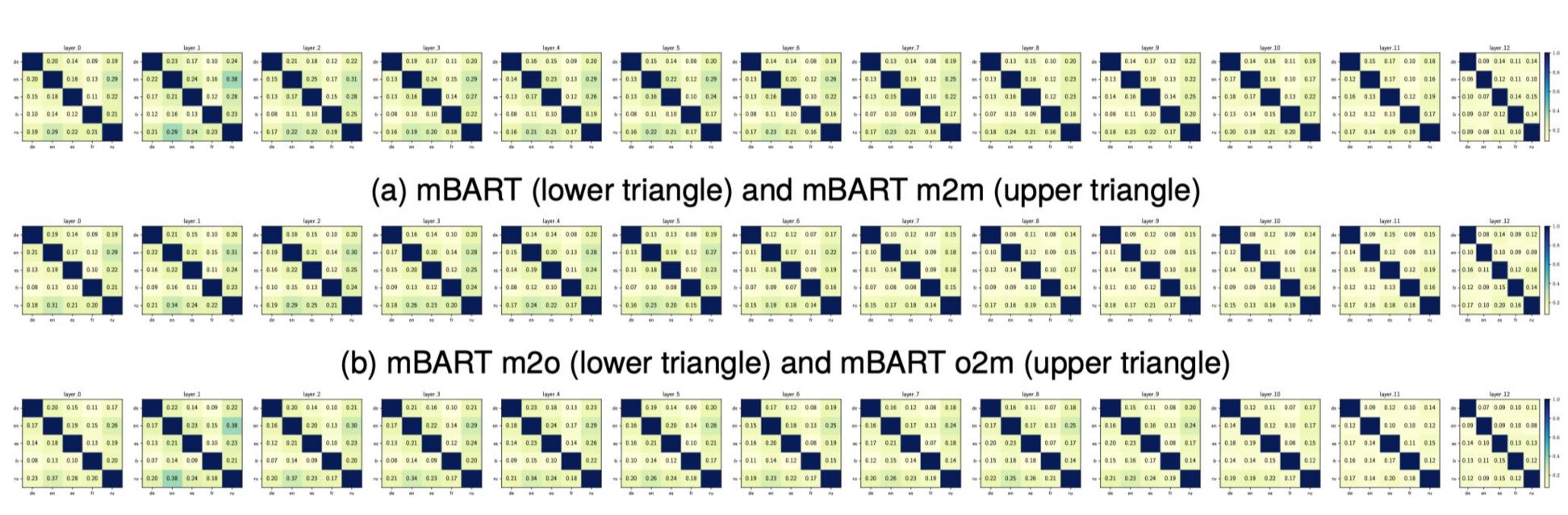
This paper investigates whether machine translation as a learning objective can improve performances on zero-shot cross-lingual transfer downstream tasks. We attempt to establish whether MT training objectives implicitly foster cross-lingual alignment:

- (i) Do models (re)trained with the MT objective develop cross-lingual representations?
- (ii) Do they generalize well on cross-lingual tasks?
- (iii) Which factors impact their performances?

Findings

- MT (continued) training objectives do not favor the emergence of cross-lingual alignments more than LM objectives, based on the study on existing publicly available pretrained models.
- We provide evidence from similarity analyses and parameter-level investigations that this is due to separability, which is beneficial in MT but detrimental elsewhere.
- We conclude that MT encourages behavior that is not necessarily compatible with high performances in cross-lingual transfer learning.

Representation similarity



(c) mBERT (lower triangle) and XLM-R (upper triangle)

Figure 2: Representational similarity between different languages with representations learned by LMs and MT models

CP's effect on scaling

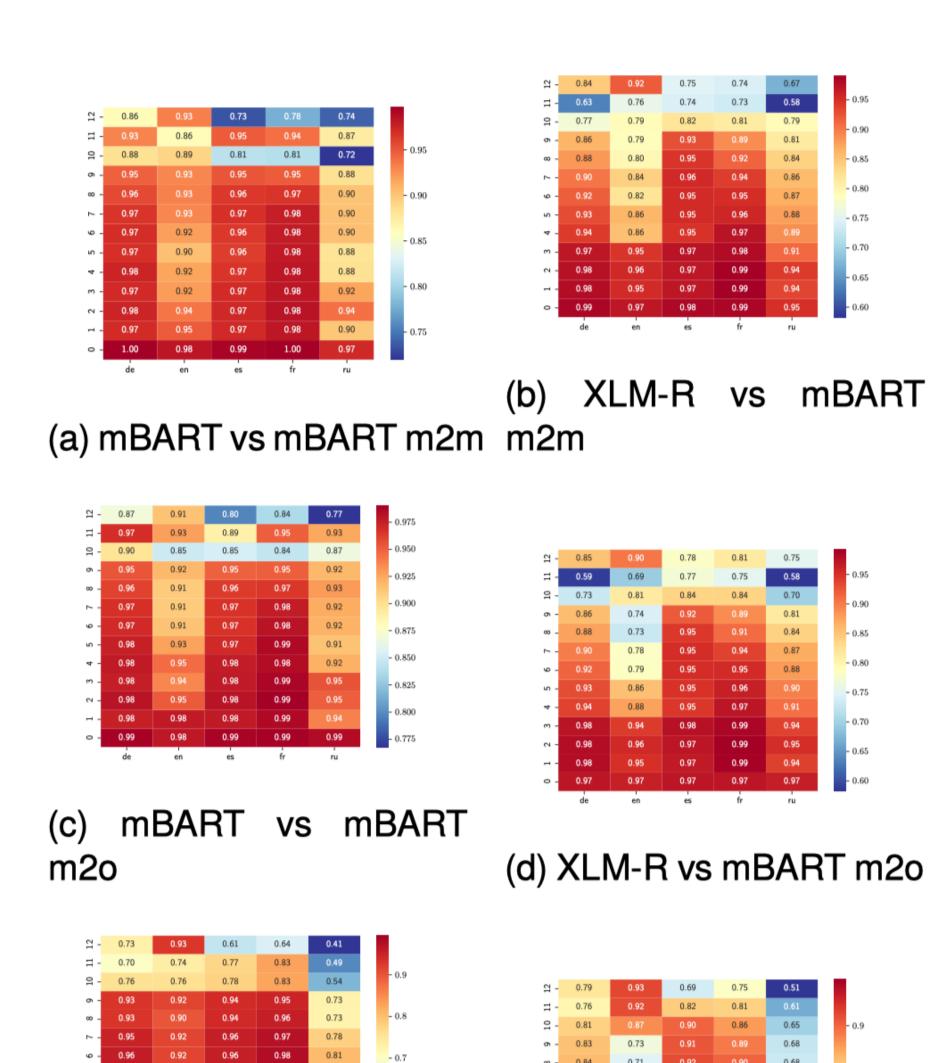
Model	k	d	$\ \sigma\ $	$oldsymbol{d}$	V σ	d	Οι σ	ut d	FC σ	up d	FC d	own d
mBART	44.76	_	44.85	_	53.73	_	53.45	_	90.25	_	99.63	_
mBART m2m mBART m2o mBART o2m	48.28 48.34 56.13	4.23 4.23 11.76	48.29 48.35 56.25	4.07 4.06 11.74	55.65 56.19 60.17	2.73 2.95 7.18	55.14 55.73 59.32	3.01 2.99 7.07	99.28 101.06 116.17	9.47 11.19 26.34	107.94 109.71 120.50	9.63 11.18 22.15

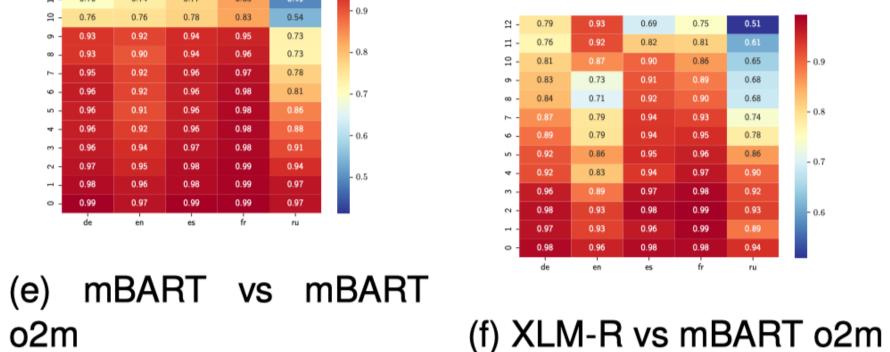
Table 2: SVD scaling effect for mBART and CP models; weight matrices from the 12th layer.

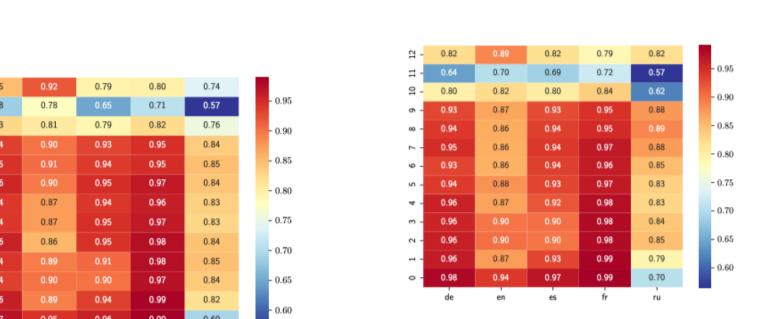
Quantitative performance

		Tasks								
	Model	NC	XNLI	PAWS-X	QAM	QADSM	WPR	NER	POS	
LM	mBERT XLM-R mBART	82.1	65.2 73.5 67.6	86.6 88.9 89.2	64.6 67.4 67.8	63.1 66.9 65.5	75.3	77.5 78.7 77.7	79.7	
MT	NLLB 600M	76.0	68.3	73.4	61.5	63.9	73.7	54.2	71.4	
СР	mBART m2o mBART o2m mBART m2m	65.4	48.1	85.6 81.7 87.2	63.9 58.4 63.2	63.9 62.7 62.8	73.2	61.5 55.1 71.9	55.7	

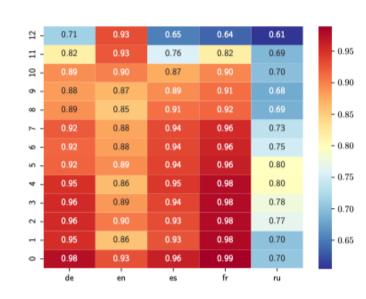
Table 1: Average performance on cross-lingual tasks. We use the base architecture for mBERT and XLM-R. mBART scores are derived from the 12-layer encoder.







(h) mBERT vs mBART (g) mBERT vs mBART m2m m2o



(i) mBERT vs mBART o2m

Figure 1: Representational similarity between mBART-based MT models and LMs

number 10052546]. The authors wish to acknowledge CSC – IT Center for Science, Finland, for generous

computational resources, including Puhti, Mahti, and LUMI extreme scale access (MOOMIN and LumiNMT).