Multimodal Cross-Document Event Coreference Resolution Using Linear Semantic Transfer and Mixed-Modality Ensembles

Abhijnan Nath, Huma Jamil, Shafiuddin Rehan Ahmed, George Baker, Rahul Ghosh, James H. Martin, Nathaniel Blanchard, and Nikhil Krishnaswamy

University of Colorado Boulder • {abhijnan.nath,nkrishna}@colostate.edu

CoNLL

61.4 59.0

62.1 61.7 61.5

58.8 59.7

59.9

58.5

60.1

63.2

63.4

64.6

59.6

60.2 61.3

59.6

Introduction

- Images contain useful coreference cues for events
- Visual cues from images can help resolve coreference when text descriptions are ambiguous
 - For example, facial, geographical, locational features
- However, most CDCR corpora is not multimodal: sparsity problem
- We augment common CDCR corpora with stable-diffusion models
- Apply Linear Semantic Transfer (Lin-Sem) method to transfer semantic information between modalities

Results (with Ensembles)

Models	MUC	B^3	CEAFe	CoNLL	Models MUC B ³ CEAFe	CoN
Held et al. (2021)	87.5	86.6	82.9	85.7	LLM 80.7 49.5 54.1	61
Ahmed et al. (2023)	_ 90.8	_86.7_	84.7_	87.4	ViT-real→LLM 85.9 38.4 52.7	59
$\texttt{ViT-gen} \oplus \texttt{LLM} + \texttt{LLM}$	89.1	86.5	84.8	86.8	BEiT-real→LLM 85.7 42.6 57.9	62
$\texttt{BEiT}\text{-}\texttt{gen} \oplus \texttt{LLM} + \texttt{LLM}$	87.5	85.7	83.9	85.7	SWIN-real→LLM 82.9 46.4 55.8	61
SWIN- gen \oplus LLM + LLM	87.5	85.9	83.8	85.7	CLIP-real→LLM 78.5 52.4 53.5	61
CLIP -gen ⊕LLM + LLM	90.1	85.3	83.8	86.4	LLM→ViT-real 86.3 37.3 52.7	58
ViT-gen→LLM + LLM→BEiT-gen + LLM	90.8	85.2	84.8 00 5	86.9	LLM→BEiT-real 85.7 40.2 53.1	59
$BEIT\text{-}gen \to LLM + LLM \to BEIT\text{-}gen + LLM$	91.3		0.08 00.0	87.8	LLM→SWIN-real 86.2 39.1 54.4	59
SWIN-Gen \rightarrow LLM + LLM \rightarrow BEII-gen + LLM	90.4	04.4 05 0	03.0 95.7	00.2 07 1	LLM→CLIP-real 86.2 37.1 52.3	58
$\Box IP - gen \rightarrow \Box IM + \Box IM \rightarrow BEII - gen + IIM$	91.2	00.0 90.2	00.7 70.4	07.4 92.5	ViT-real→LLM + LLM→BEiT-real + LLM 86.2 39.6 54.4	⁻ - 60
LLM→VII-Yell + LLM→BEII-Yell + LLM IIM→PEiT-gen + IIM	88.7	02.J 82.2	79.4	83.3	BEIT-real→LLM+LLM→BEIT-real+LLM 87.1 42.1 60.4	63
LLM-SWIN-Gen + LLM-BEIT-Gen + LLM	88.7	82.2	79.1	83.3	SWIN-real→LLM + LLM→BEiT-real + LLM 87.1 42.5 60.5	63
$LLM \rightarrow CLIP-qen + LLM \rightarrow BEiT-qen + LLM$	88.7	82.2	79.1	83.3	CLIP-real \rightarrow LLM + LLM \rightarrow BEiT-real + LLM 87.1 43.8 62.8	64
ViT -real $\rightarrow I.I.M + I.I.M \rightarrow BE iT$ -real + I.I.M	- 94.5	89.5	91.8	<u>91.9</u> -	LLM \rightarrow ViT-real + LLM \rightarrow BEiT-real + LLM 86.2 39.0 53.5	59
$BEiT-real \rightarrow LLM + LLM \rightarrow BEiT-real + LLM$	88.9	82.4	79.7	83.7	LLM→BEiT-real + LLM 85.8 40.8 54.1	60
SWIN-real \rightarrow LLM + LLM \rightarrow BEiT-real + LLM	88.7	82.2	79.1	83.3	$LLM \rightarrow SWIN$ -real + $LLM \rightarrow BEiT$ -real + LLM 86.6 40.7 56.6	61
CLIP- real→ LLM + LLM→BEiT- real + LLM	94.3	89.3	91.6	91.7	LLM \rightarrow CLIP-real + LLM \rightarrow BEiT-real + LLM 86.2 39.0 53.5	59
LLM→ViT- real + LLM→BEiT- real + LLM	88.7	82.3	79.3	83.4		
LLM→BEiT- real + LLM	88.7	82.2	79.1	83.3	MUC B3 CEAE a and CONUL E1 results on A	
LLM→SWIN- real + LLM→BEiT- real + LLM	89.0	82.7	80.1	83.9	WICC, DS, CLAI E and CONLETT TESUITS OF A	
LLM→CLIP-real + LLM→BEiT-real + LLM	88.7	82.2	79.1	83.3	Phase 1 Eval set.	

MUC, B³, CEAF_e and CoNLL F1 results on **ECB+** test set, using ensemble models. Ensemble model names are formatted Hard-N model + Hard-P model + Easy pairs model. LLM was always used to handle Easy pairs.

• We establish upper-limit on ECB+; new baseline on AIDA Phase 1 data

High-level overview of approach

Image Generation and Encoding

- Generate photo-realistic images from ECB+ mentions using Stable Diffusion models
- One image/mention ~ less-compute
- Source images from URLs in ECB+ meta data
- AIDA data already contains images for mentions
- We encode these images with ViT, SWIN, BEiT and CLIP

Linear-Semantic Transfer (Lin-Sem)

• Text and Image representations of event mentions are linearly-mapped *bidirectionally*

Analysis

- Linear mapped systems close performance gap with textonly + domain-fused models
- Ensembles outperform text-only baseline (Ahmed at al., 2023) and establish upper-limit (91.9 CoNLL F1) on ECB+
- 64.5 CoNLL F1 on AIDA (+3 F1 vs Text-only LLM)
- Multimodal cues help resolve harder coreferences
- Visual media contain referential cues, missing in textmodality: useful for semantic transfer

- We use a ridge regressor to generate optimal mapping matrices (coefficients)
- At inference, we matrix multiply both modality representations with their respective mapping matrices

Linear semantic Transfer (Lin-Sem) Method. Arg1 and Arg2 refer to

Semantic Transfer Categories

• Similarity scores (within-topic, within-doc, Wu-Palmer and

special Doctor Who Live : The Next Doctor Sunday.

small tsunamis into Japan 's

rekindled bitter memories of similar

Sample coreferent event pairs from ECB+ (L: real images, R: generated images) that were correctly linked by our best multimodal ensemble (ViT-real \rightarrow LLM + LLM \rightarrow BEiTreal + LLM), but not by the text-only model

Conclusion and Future Work

- Multimodal cues can help event coreference resolution especially for harder cases
- Lin-Sem mapping between embedding spaces can transfer coreference-specific knowledge between distinct modalities.
- Upper-bound on the ECB+ (> 3 F1 points) using our ensembles + a new baseline on AIDA
- Overall, modular and compute-efficient

mention cosine similarity) are computed.

- Based on a threshold (dev-set), mention pairs are binned into easy-positive, easy-negative, hard-positive and hard-negative
- Categories used in selecting ensemble components

Kernel Density Estimation plots of similarity scores for mention pair difficulty categories in ECB+ (L) and AIDA Phase 1 (R)

• Apply to more challenging corpora like the FCC with crosssubtopic mentions or in multi-lingual ECR.

