Improving Language Model Reasoning with Self-motivated Learning

Yunlong Feng, Yang Xu, Libo Qin, Yasheng Wang, Wanxiang Che Harbin Institute of Technology, China Huawei Noah's Ark Lab

Motivation & Background

- Models gain reasoning capability
 - After trained with data that has rationales
- Lacks of datasets with high-quality rationales
 - high annotation cost
- How to use existing datasets without rationales?
 - Utilize the correctness

• Correct is better than Wrong

Method

Question Answer / Answer * Rationale ① Generation 1. Rationale Generation			Questio SFT	n, <i>Rationale, A</i> 1 Tinetuning Model	Inswer PPO Model	Rationale Generation [Instruction and Question] $\langle q_i \rangle$ [Answer] $\langle a' \rangle$ [Pationalo]	Final Answer Generation[Instruction and Question] $\langle q_i \rangle$ [Rationale] $\langle \hat{r}_i \rangle$ [Answer] $\langle \hat{a}_i \rangle$	
Condition Rank	ondition $Answer = Answer'$ $Answer \neq Answer'$ \checkmark Filter \checkmark FilterRank $Rationale$ \checkmark Rationale $\overset{\star}{\sim}$		Answer ✓ Filter	Reward Model 2 Finetuning Question, Rationale Question, Rationale				
Dataset	2. Ration Choices	Training Samples	Test Samples	Data Split	3. IVIO License	References	[Instruction and Question] Would a pear sink in water? [Answer]	[Instruction and Question] Would a pear sink in water? [Answer]
SingleEq AddSub MultiArith SVAMP	- - - -	356 276 420 700	152 119 180 300	70:30 70:30 70:30 70:30	None Unspecified Unspecified MIT	Koncel-Kedziorski et al. (2015a) Hosseini et al. (2014) Roy and Roth (2016) Patel et al. (2021a)	No [Rationale] The density of a pear is about 0.6a/cm3, which is less than	Yes [Rationale] The density of a pear is about 0.60/cm3, which is less than

• • • • • • • • • • • • • • • • • • • •						()	U 60/CM3 Which is less than	I 60/cm3 Which is less than
GSM8K	-	7473	1319	Original	MIT	Cobbe et al. (2021)		
Date Understand	ling 5-6	258	111	70.30	Anache-20	Srivastava et al. (2022)	water. Objects less dense than	water. Objects less dense than
		200	1001			$\frac{1}{2}$	water float Thus a pear would	water float Thus a near would
CommonSenseC	QA 5	9741	1221	Original	Unspecified	Talmor et al. (2018)	Mater neut. Thae, a pear weard	
StrategyQA	2	1603	687	70:30	Apache2.0	Geva et al. (2021a)	float.	SINK.

Experiments

Method	Param	Single Eq	Add Sub	Multi Arith	SVAMP	GSM8K	Date Understanding	Common SenseQA	Strategy QA
			Close-	Source	Models				
text-davinci-003	175B	86.4	81.3	83.7	73.6	59.5	77.0	70.0	61.1
text-davinci-002	175B	82.24	78.99	78.89	64.67	40.26	73.87	61.75	53.57
			Open-	Source I	Models				
StableVicuna	13B	62.50	57.14	43.33	46.67	40.26	45.95	58.64	41.34
LLama2-Chat	7B	73.03	68.91	67.22	53.67	28.35	35.14	56.67	38.14
			Method	s on Lla	ma2 7B				
Few-shot-CoT	7B	63.82	54.62	35.00	39.00	14.60	53.15	50.61	61.28
Few-shot-CoT ^{SC=8}	7B	67.76	67.23	55.56	44.67	15.09	35.13	48.40	62.45
Fine-tune	7B	71.05	63.87	11.67	45.67	12.58	64.87	76.58	65.21
Fine-tune-CoT (text-davinci-002)	7B	70.39	72.27	76.67	47.33	_	73.88	_	58.95
Fine-tune-CoT (STaR)	7B	75.66	67.23	72.78	44.33	17.29	81.98	63.63	64.63
Fine-tune-CoT (Llama2)	7B	71.05	65.55	53.33	40.67	13.72	83.78	69.53	60.84
Self-motivated Learning	7B	76.32	76.47	80.00	55.33	18.88	87.39	77.97	66.08

Method	SingleEq	AddSub	MultiArith
Fine-tune-CoT (text-davinci-002)	70.39	72.27	76.67
+RL	71.71	78.16	80.56
Increase	+1.32	+5.89	+3.89

The reward model trained with rank information \bullet exhibits a certain degree of generalization.

• Accuracy (%) in 8 tasks under our different models and methods. Note that the methods based on the LLama2 7B are trained in different datasets separately.

The Self-motivated Learning applies PPO for reinforcement learning in the training dataset \bullet using the Fine-tune-CoT model, resulting in an average increase of 10.68%.

Conclusion

• We propose "Self-motivated Learning", a framework is grounded in the idea that a rationale leading to the correct answer is superior to one leading to an incorrect answer. • We conducted experiments across different datasets encompassing three categories of complex reasoning, demonstrating that our method can significantly enhance model performance without external annotation.

The reward of model can reflect the performance. \bullet

The performance is increasing during training.

Acknowledgement

We gratefully acknowledge the support of the National Natural Science Foundation of China (NSFC)via grant 62236004 and 62206078.

LREC-COLING 2024

