Building Dataset for Grounding of Formulae

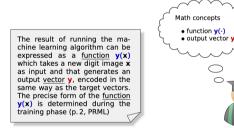
-Annotating Coreference Relations Among Math Identifiers-

Takuto Asakura, Yusuke Miyao, Akiko Aizawa

LREC 2022 (prerecord)

Grounding of Formulae [Asakura+ 2020]

- **1.** Finding groups of tokens which refer to math concepts E.g. $x, \alpha, \cos, \sum, =, \times, \text{ etc.}$
- 2. Associating a corresponding math concept to each group



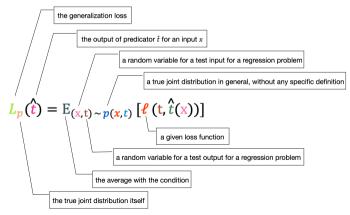
Our contribution: Built a dataset for automating the grounding

- Manually annotated 12,352 math identifiers in 15 papers
- Revealed scope switch of identifiers is frequent and complex

Grounding of Formulae [Asakura+ 2020]

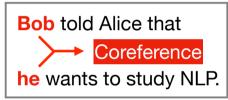
≈ *Description Alignment* + Coreference Resolution

- A task to associate description for each math identifier occurrence
- There are some existing work [Aizawa+ 2013, Alexeeva+ 2020, etc.]



Grounding of Formulae [Asakura+ 2020] ≈ Description Alignment + Coreference Resolution

Coreference in Natural Languages



Coreference in Formulae

The result of running the machine learning algorithm can be expressed as a function $\mathbf{y}(\mathbf{x})$ which takes a new digit image \mathbf{x} as input and that generates an output vector \mathbf{y} , encoded in the same way as the target vectors. The precise form of the function $\mathbf{y}(\mathbf{x})$ is determined during the training phase (PRML, p. 2)

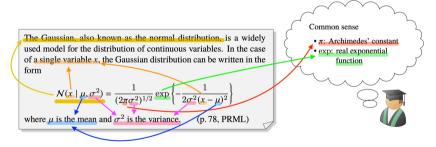
Difficulty and Necessity of Formulae Grounding

- Various ambiguities similar to natural languages [Kohlhase+, 2014]
 - A symbol (token) can be used in several meanings
 - Syntactic ambiguity E.g. f(a+b)
- Formulae cannot be understood without reading surrounding texts
- Common sense and domain knowledge may be required E.g. π is Archimedes' constant

Usage of character y in the first chapter of PRML (except exercises)								
Text fragment from PRML Chap. 1	Meaning of y							
\dots can be expressed as a function $\mathbf{y}(\mathbf{x})$	a function which takes an image as input							
an output vector y , encoded in	an output vector of function y(x)							
\ldots two vectors of random variables x and y \ldots	a vector of random variables							
Suppose we have a joint distribution $p(\mathbf{x}, \mathbf{y})$	a part of pairs of values, corresponding to ${f x}$							

Source of Grounding (SoG)

Bases of grounding of formulae inside or outside documents: inner Surrounding texts, formulae E.g. apposition noun, $\stackrel{\text{def}}{=}$ outer Common sense, domain knowledge E.g. Wikidata



Things annotated — Information that will be needed for automation

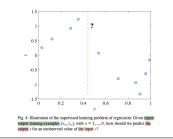
- Math concepts are the ground truth of the grounding
- Sources of grounding will be extracted first for automating

MioGatto — The Annotation Tool [Asakura+ 2021] Math Identifier-Oriented Grounding Annotation Tool

- Special annotation tool for building our grounding dataset
- Available as an open source software (MIT license)

III-A Goals

As illustrated in Fig. 4, in a regression problem, we are given **Etraining** set D of N training point (x_m, t_n) , where the yarabbes x_n are the inputs, also known as covariates, downa points, or explanatory variables; while the **yarabbes** x_n are the outputs, also known as dependent variables, labels, or responses. Note that the outputs are continuous variables. The problem is to protect the output x are what in x_n are the input x.



https://github.com/wtsnjp/MioGatto

Annotation Method

Annotators

We recruited 10 student annotators (paid)

in various fields:

NLP × 4, Logics × 2, Mathematics × 1, Physics × 1, Astronomy × 1

in various grades:

high school × 1, undergrad × 1, Master × 5, Doctoral × 3

Method

- Annotation targets are **math identifiers** E.g. x, θ , sin
- The target papers are basically selected by annotators
- Annotation guideline is provided for the annotators

https://github.com/wtsnjp/MioGatto/wiki/Annotator's-Guide

Annotation Results – Dataset Overview

Dataset for formulae grounding									
No.	Domain	#words	#types	#occr	#concepts	Avg. #candidates	#sources		
1	ML	10976	40	937	104	6.4	232		
2	NLP	4267	42	266	73	2.6	30		
3	NLP	3563	38	433	79	2.5	34		
4	Logics	3567	46	1648	64	1.9	30		
5	Algebra	13154	141	4629	424	5.2	180		
6	NLP	2881	25	162	30	2.7	12		
7	NLP	5543	31	203	47	2.6	36		
8	NLP	4613	23	217	27	1.1	28		
9	NLP	6255	34	510	74	2.7	27		
10	NLP	5415	73	1175	167	3.3	60		
11	NLP	4451	33	237	61	2.9	34		
12	NLP	4261	31	186	39	1.7	25		
13	NLP	2257	23	124	27	1.2	18		
14	Astronomy	10032	59	1064	129	4.2	97		
15	Astronomy	4863	41	561	73	2.3	95		
Sum		86098	680	12352	1418	_	938		

https://sigmathling.kwarc.info/resources/grounding-dataset/

Dataset Analysis (1) Inter-annotator agreements

Inter-annotator agreements (to Annotator A)								
Annotator	А	В	С	D	E			
Agreement (%)	_	96.5	87.4	92.1	84.2			
Cohen's κ^*	—	0.94	0.80	0.87	0.75			
#SoGs	232			249	257			
Overlap (%)	—		—	80.3	93.4			

* Weighted average according to the #occr

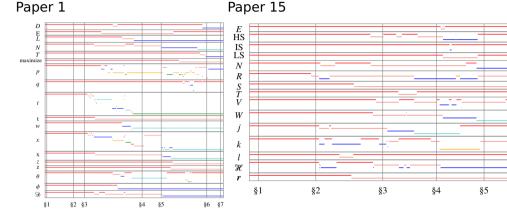
Five people independently annotated Paper 1

- Mah concepts are annotated by all
- Sources are annotated by Annotator A, D, E

Both agreements and Cohen's κ for math concepts are high

Text spans that are recognized as SoGs are hevily overlap

Dataset Analysis (2) Scope Switches



Scope switches—changes of math identifier meanings

- 89.5% of them occur within a single section
- The scopes of identifier can back and forth

Dataset Analysis (3) Source of Grounding

Examples of grounding sources

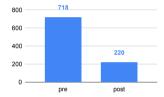
In the case of **a single variable** *x*, the Gaussian distribution can be written... (p. 78, PRML)

Analyses on annotated 938 SoGs

- 76.5% of them are pre SoG
- Distance between identifier and SoG is 14.7 words in average cf. Median is 0–4

Typical SoGs are apposition nouns

Position of SoG



Identifier — SoG distance

Future Work

Reducing annotation costs

- Difficult to annotate a paper by multiple annotators
 we could not get inter-annotator agreements for all papers
- Still not enough data to compare among different domains
 - Too many math formulae in papers about Mathmatics and Physics → We need some automation. Create only dictionaries first
 - Notations are especially trickey in papers for math logics
 - \rightarrow Disambiguation for numbers and operators are needed

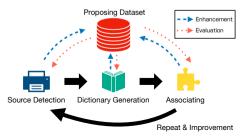
Further unanswerd research questions

- Are there differences between annotation by authors and readers?
- Can people who are not specialized for the domain also perform the annotation?

The Strategy for the Grounding Automation

3-step of Automation

- 1. Detecting/Retrieving inner-document sources of grounding → Pattern matching + POS tagging
- 2. 'Dictionary' generation by clustering the sources
 - \rightarrow Short text clustering [Jiaming+, 2017] may be applicable
- 3. Associating each occurrence with the entry in the 'dictionary'
 - \rightarrow Pattern matching + POS tagging + text classification



References

- Akiko Aizawa, et al. "NTCIR-10 Math Pilot Task Overview." In Proceedings of NTCIR-10 (2013).
- Maria Alexeeva, et al. "MathAlign: Linking Formula Identifiers to their Contextual Natural Language Descriptions". Proceedings of LREC 2020.
- ► Takuto Asakura, et al. "Towards Grounding of Formulae.". In Proceedings of SDP 2020.
- Takuto Asakura, et al. "MioGatto: A Math Identifier-oriented Grounding Annotation Tool." In 13th MathUI Workshop at 14th Conference on Intelligent Computer Mathematics (MathUI 2021).
- Christopher M Bishop. Pattern Recognition and Machine Learning (2006).
- Xu, Jiaming, et al. "Self-taught convolutional neural networks for short text clustering." Neural Networks 88 (2017).
- Michael Kohlhase and Mihnea Iancu. "Co-representing structure and meaning of mathematical documents" (2014).