CAIR CENTRE FOR ARTIFICIAL INTELLIGENCE RESEARCH

Explainable Tsetlin Machine Framework for Fake News Detection with Credibility Score Assessment

BIMAL BHATTARAI

University of Agder

Introduction

- Fake news are the news that intentionally spread misinformation and deceives people for political and financial gain.
- ✤ Most people depends on online platform for news than newspapers.
- ✤ Encourages biases, false hopes, increase distrust and can trigger violence.
- Language models such as GPT-3 enable the automatic generation of realisticlooking fake news accelerating growth.
- The explainability of decision can help to overcome many challenges and performance improvements.

Background

- Many works on detecting false online advertising, fake consumer reviews, and spam emails.
- ✤ Typical detection technique use text-based linguistic or visual features.
- Recent deep-learning methods uses features based on social platform-specific features such as tweets, retweets etc.
- Existing deep learning methods lacks transparency and interpretability.

Problem Statement

- ✤ Fake news can be generated using advance models/algorithms.
- ✤ Intentionally created to deceive a user.
- ✤ Narrate real events with fake claims.
- ✤ Handcrafted and data specific features fails.

Tsetlin Machine

Fig. 1: Transition graph of a two-action Tsetlin Automaton.

Why Tsetlin Machine?

- Tsetlin Machine (TM) is a recent rule-based approach to solve tasks like pattern recognition and data regression.
- TM has promising properties regarding computational simplicity, transparency and interpretability, when compared to deep learning.
- TM has previously performed well in some natural language processing (NLP) applications.

TM clause formation

Explainable TM Framework

TM Learning

X = ["Building a wall on the U.S-Mexico border will take literally years."], with output target "true news" i.e., y = 1.]

TM Formulation

 $X = (x_1, \dots, x_o)$ Input

XOR case

Literal set $L = \{x_1, \ldots, x_o, \bar{x}_1, \ldots, \bar{x}_o\}$

 $C_{j}^{+}(X) = \bigwedge_{l_{k} \in L_{j}^{+}} l_{k} = \prod_{l_{k} \in L_{j}^{+}} l_{k}.$ Clause formation

1 10 10 \mathbf{i} Output

$$\hat{y} = u \left(\sum_{j=1}^{m/2} C_j^+(X) - \sum_{j=1}^{m/2} C_j^-(X) \right).$$

$$\hat{y} = u \left(x_1 \bar{x}_2 + \bar{x}_1 x_2 - x_1 x_2 - \bar{x}_1 \bar{x}_2 \right)$$

Experiments

Dataset	#Real	#Fake	#Total
PolitiFact	563	391	954
GossipCop	15,338	4,895	20,233

Table 1: Dataset statistics.

Preprocessing:

- ✤ Includes tokenization, lemmatization and feature selection.
- ✤ Bag of Words approach.
- ✤ Chi-square test statistics as a feature selection technique.

Results

Models	Pol	itiFact	GossipCop				
WIGGEIS	Acc.	F1	Acc.	F1			
RST	0.607	0.569	0.531	0.512			
LIWC	0.769	0.818	0.736	0.572			
HAN	0.837	0.860	0.742	0.672			
CNN-text	0.653	0.760	0.739	0.569			
LSTM-ATT	0.833	0.836	0.793	0.798			
LR	0.642	0.633	0.648	0.646			
SVM	0.580	0.659	0.497	0.595			
Naïve Bayes	0.617	0.651	0.624	0.649			
RoBERTa-MWSS	0.825	0.805	0.803	0.807			
BERT	0.88	0.87	0.85	0.79			
XLNet	0.895	0.90	0.855	0.78			
TM	0.871 ± 0.24	$\textbf{0.901} \pm \textbf{0.001}$	0.842 ± 0.03	$\textbf{0.896} {\scriptstyle \pm} \textbf{ 0.004}$			

Table 2: Performance comparison of our model with 8 baseline models.

Credibility Assessment

The credibility is defined as "the classification confidence of the TM"

Figure 3: Credibility assessment for fake news

Explainability

			Polit	tiFact			
	Tru	e		Fake			
Plain	times	Negated	times	Plain	times	Negated	times
trump	297	candidate	529	congress	136	trump	1252
said	290	debate	413	tax	104	profession	1226
comment	112	civil	410	support	70	navigate	1223
donald	110	reform	369	senate	64	hackings	1218
story	78	congress	365	president	60	reported	1216
medium	63	iraq	361	economic	57	arrest	1222
president	48	lawsuit	351	americans	49	camps	1206
reported	45	secretary	348	candidate	48	investigation	1159
investigation	38	tax	332	debate	44	medium	1152
domain	34	economy	321	federal	41	domain	1153

Table 3: Top ten Literals captured by clauses of TM for PolitiFact.

			Goss	ipCop			
	Trı	ie			Fa	ke	
Plain	times	Negated	times	Plain	times	Negated	times
source	357	stream	794	season	150	insider	918
insider	152	aggregate	767	show	103	source	802
rumors	86	bold	723	series	79	hollywood	802
hollywood	80	refreshing	722	like	78	radar	646
gossip	49	castmates	721	feature	70	cop	588
relationship	37	judgment	720	video	44	publication	579
claim	33	prank	719	said	33	exclusively	551
split	32	poised	718	sexual	32	rumor	537
radar	32	resilient	714	notification	25	recalls	535
magazine	30	predicted	714	character	25	kardashian	525

Table 4: Top ten Literals captured by clauses of TM for GossipCop.

Explainability Comparison

PolitiFact			GossipCop				
Fake)	Tru	e	Fake		True	
Features	Weights	Features	Weights	Features	Weights	Features	Weights
trump	1.779	tax	0.757	source	4.343	season	2.758
president	0.685	health	0.606	insider	3.769	episode	1.744
domain	0.670	congress	0.560	hollywood	2.114	series	1.273
donald	0.534	senate	0.508	rumors	1.917	video	1.216
email	0.480	hotline	0.484	report	1.866	shared	1.105
meme	0.363	economy	0.421	radar	1.713	related	1.074
reported	0.369	americans	0.395	magazine	1.625	watch	1.016
story	0.365	energy	0.388	gossip	1.544	netflix	1.003
fake	0.347	reform	0.340	romance	1.506	like	0.958
investigation	0.345	iraq	0.269	claims	1.393	dress	0.958

Table 1: Top ten features captured by ELI5.

Table 2: Feature weights captured by TM from a single test instance.

PolitiFact			GossipCop				
Fa	ke	True		Fake		True	
Features	Weights	Features	Weights	Features	Weights	Features	Weights
sold	1145	percent	366	fake	606	like	686
trying	1010	oil	259	president	602	video	767
price	1017	going	288	celebrities	653	images	935
North	1000	political	284	pictures	644	network	931
jet	1142	republican	299	worried	600	check	887
plane	1105	state	174	start	239	look	758
-	-	companies	257	Beyoncé	620	USA	1020
-	-	administration	235	networks	672	created	907
-	.=:	want	148	-	-	able	818

Explainability

True

PolitiFact - LIME

Prediction probabilities

Fake	0.37	
True	0.63	

Fake

Text with highlighted words

The state has tried selling its unwanted jet online four times and failed. So last week, the Palin administration signed a contract with an Anchorage aircraft broker who thinks he can succeed where eBay couldn't The eBay thing didn't work out very well, said Dan Spencer, director of administrative services for the Department of Public Safety. He's the person charged with trying to get rid of the infamous Westwind II.

The administration made a deal last week with Turbo North Aviation, promising the broker a 1.49 percent cut of the selling price.

Former Gov. Frank Murkowski bought the jet, which cost the state

Explainability

True

GossipCop - LIME

fake 0.02 like 0.02 video 0.02 . images 0.01 network 0.01 President 0.01 celebrities 0.01 pictures 0.01 USA 0.01 look 0.01 womied 0.01 start 0.01 created 0.01 second 0.01 check 0.01 Beyoncé 0.01 able 0.01 using 0.01 networks 0.00 just 0.00

Fake

Text with highlighted words

The video below shows the process in full, starting with the database of celebrity images the system was trained on. The researchers used what's known as a generative adversarial network, or GAN, to make the pictures. GANs are actually comprised of two separate networks: one that generates the imagery based on the data it's fed, and a second discriminator network (the adversary) that checks if they're real.

By working together, these two networks can produce some startlingly good fakes. And not just faces either — everyday objects and landscapes can also be created. The generator networks produces the images, the discriminator checks them, and then the generator

Conclusion

- Tsetlin Machine employs clauses to capture the lexical and semantic features based on word patterns in a document.
- The credibility assessment is performed for ranking fake news based on classification confidence.
- The explainability of model is highlighted using a case study.

CAIR CENTRE FOR ARTIFICIAL INTELLIGENCE RESEARCH

Thank you!