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Illnesses resul(ng from poor health decisions
have become leading cause of death

(Keeney, 2008)
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Health behaviour changes are difficult to put
into practice and sustain

(Kelly & Barker, 2016)
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Mo(va(onal Interviewing
facilitates behaviour change

(Miller & Rollnick, 2002)

Automated delivery via a Conversa(onal
Agent has mul(ple poten(al benefits

(Lise; et al, 2015)
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A core aspect of MI is tailoring the
conversation to the client and 

respond to their current state using

Open Questions ReflecBons AffirmaBons

(Miller & Rollnick, 2002)
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Exis(ng conversa(onal agents rarely
offer the flexibility needed for MI

Strict frameworks

oChoice 1
oChoice 2
oChoice 3

MulBple choice input Open QuesBons

(i.e. Kocielnik et al, 2018; Bickmore et al, 2011, Nurmi et al. 2020)
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Exis(ng language resources focus
mainly on therapist codes of spoken
MI

only few resources include high 
level annotation of client
behaviour

(Pérez-Rosas, 2018; Tanana et al, 2016; Tavabi et al, 2020)
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We are lacking suitable
language resources of… 

…wriJen
language… 

…about behaviour
change… 

…with annotaBons of MI 
client behaviour codes
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Relevant Client Codes
in Motivational Interviewing

Change Talk + Sustain Talk -

Reason Rationale, basis, incentive, justification, or motive

desire Desire or will

ability Ability or degree of difficulty of the change

need Necessity or need

Commitment Agreement, intention, or obligation regarding future behaviour

Taking Steps Specific steps that have been taken in the recent past

Valence

La
be

l

Su
bl

ab
el

(adapted from Miller et al, 2008)

Follow/Neutral
Other

Unrelated to speaker‘s current behaviour change
Related to behaviour change but not attributable to other labels
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Data Collec(on
Data from two subforums of Germany‘s largest weight loss forum adipositas24.de

On Post level: 
• Contains Change and/or Sustain Talk

7210 posts

1203 posts
15.533 sentences

4.724 annotated sentences

On Sentence level:
• Client Codes
• Follow/Neutral (N=9643)

• Often offering support/Information to
others

• Other (N=828)
• Combination of Client Codes (N=321)
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Code Distribution
in Remaining Forum Data

Change Talk + Sustain Talk  -

Reason 28.3% 16%

desire 5% 0.9%

ability 2.8% 7.4%

need 3.8% 0.2%

Commitment 9.2% 0.4%

Taking Steps 20.1% 5.5%

Valence

La
be

l

Su
bl

ab
el
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Data Analysis: Inter-Rater Reliability
Level Cohen‘s 𝜅
Valence 0.755

Label 0.58

R 0.621

TS 0.491

C 0.625

Sublabel 0.654

Rno sublabel 0.579

Ra 0.681

Rd 0.662

Rn 0.768

Inter-rater reliability scores are
comparable to other research in 

the field
(Pérez-Rosas et al, 2016; Tanana et al, 2016; 

Hershberger et al, 2021)
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Data Analysis: Sentiment

• Classified randomly sampled sentences with pretrained German bert
model for sentiment analysis (Guhr et al, 2020) and compared with valence
annotations
• Chi-Square χ (2, N=1000) = 51.21, 𝜌 < 0.0001); F1 = 27%

- 217 81 23

+ 298 265 116

negative neutral positive
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Data Analysis: Keywords
TS

have

eaten

eat

was

yesterday

make

started

changed

have

day

C

will

try

tomorrow

sometime

first

today

continue

committed

go

next

R

is

am

kg

are

fear

feeling

yourself

satisfied

Rn

must

have to

important

need

take care

change

work

do

find

Ra

can

hard

manage

not

manage

difficult

find

it

know

doable

Rd

want to

would like

hope

I

gladly

like

wish

cake

+

do

hope

now

will

like

kilos

kg

goal

finally

-

not

hard

problem

unfortunately

find

is

nothing

believe

P < 0.05, Bonferroni corrected

Rno sublabel

have

was

am
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Machine Learning: Random Split

F1 Std Precision Recall F1

Valence 73.97 2.63 70.42 73.31 70.87

Labels 74.16 3.22 79.64 74.87 76.96

Sublabels 79.49 2.69 66.20 81.89 71.53

Cross-Validation Test Set

• Three datasets: Valence, Label, Sublabel
• Stratified random 80/20 Train-Test-Split
• Undersampling to the size of second largest class
• Finetuned GermanBERT to each dataset using 10-Fold-Cross-Validation
• Three epochs, learning rate 5e-05
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Machine Learning: Split by user
activity level

F1 Std Precision Recall F1

Valence 75.11 2.24 72.39 74.76 72.86

Labels 76.31 3.78 71.38 73.71 72.46

Sublabels 79.43 2.6 62.84 74.76 66.69

Cross-Validation Test Set

• 65 most active users created 80% of dataset
• Used these 80% for training and texts by remaining 234 

users for testing
• Do user specific utterances/conversational styles influence

classification performance?
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Limitations

• Potential data bias towards people who are highly
motivated to change
•Users were often seen to give advice and offer

emotional support to others → Annotating therapist
codes might yield further insight on when people share
information
•Utterances containing multiple labels or annotated with

Other | Follow/Neutral were not included in 
experiments and analysis
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Conclusion

Future work will look into context and domain independent
applications of classifiers trained on this data

✓ ✓ ✓
…written

language… 
…about behaviour

change… 
…with annotations of MI 
client behaviour codes

https://github.com/SelinaMeyer/GLoHBCD
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