

A Distant Supervision Corpus for Extracting Biomedical **Relationships Between Chemicals, Diseases and Genes**

Dongxu Zhang*,

Sunil Mohan*,

Michaela Torkar,

Andrew McCallum

UMass,

CZI Science,

UMass

UMassAmherst

College of Infortation & Computer Sciences

Chan Zuckerberg **Initiative**

Biomedical Relation Extraction: Motivation

- Assist curators of Biomedical KBs:
 - CTD, CMAP, ProteinDB, KEGG, ...

Over 1M new papers p.a. !

- Build Human Interactome Knowledge Graphs: Drugs, Genes/Proteins, Diseases, Symptoms, ...
 - Understanding disease mechanisms (Lee et al, 2019)
 - Predict poly-pharmacy side-effects (*Zitnick et al*, 2018)
 - Drug re-purposing (Morselli Gysi et al, 2020)

Previous Biomedical RE Corpora

- Several labeled corpora, esp. since ~2006
- Limitations
 - Fewer documents
 - Fewer entity types, one or small number of relation types
 - Entity linking sometimes not included
- Curating Direct labeling of Entities and Relationships in text
 - Very useful for ML/NLP, but ...
 - Very time consuming
 - Curated corpora tend to be small

Introducing ChemDisGene

- New labeled dataset for Biomedical Relation Extraction
- Distant (document level) labels for
 - 18 relation types
 - Between 3 entity types (Chemicals, Diseases, Genes / Protein Gene-products)
- Two corpora
 - Large, automatically derived: ~80k abstracts
 - Manually curated: 523 abstracts

Outline

- Task definition
- ChemDisGene: Automated Derivation
- ChemDisGene: Manual Curation Process
- Dataset Statistics
- Benchmark Models

Task Definition

- Input
 - PubMed[®] Abstracts
 - Entity mentions linked: Chemicals, Diseases and Genes / Proteins.

• Output

Losartan: a selective angiotensin II type 1 (AT1) receptor antagonist for the treatment of heart failure

Losartan (COZAAR) is the prototype of a new class of potent and selective angiotensin II (AII) type 1 (AT(1)) receptor antagonists with the largest published preclinical and clinical data base. Losartan (parent compound), has moderate affinity for the AT(1) receptor (competitive inhibition). Losartan is well-absorbed orally as an active drug and is rapidly converted via oxidation in the human liver to a more potent metabolite (designated E3174) with an affinity 20to 30-times greater for the AT(1) receptor (non-competitive inhibition). E3174 has a half-life of 6 - 9 h; elimination is via renal and hepatic routes. Antihyper-tensive and, in heart failure patients, haemodynamic activity is observed over a 24 h period with once daily dosing. Over 6 million patients have been treated for hypertension with continued excellent tolerability. Clinical experience in heart failure is growing, and

• • •

Task Definition (contd.)

- Input
 - PubMed[®] Abstracts
 - Entity mentions detected and linked.
- Output: Relationships
 - (Entity, Relation-type, Entity) triplets
 - Distant labels: Annotated at the Document Level

Outline

- Task definition
- ChemDisGene: Automated Derivation
- ChemDisGene: Manual Curation Process
- Dataset Statistics
- Benchmark Models

Comparative Toxicogenomics Database (CTD)

• Expert curated KB of Relationships, between Chemicals, Diseases, Genes/Proteins, ... http://ctdbase.org

- Primary contributions, extracted from research papers (full text)
- Distant Labels: Relationships associated with PubMed ID
- Relationship types:
 - Binary: "lead acetate results in decreased expression of 14-3-3ZETA mRNA" *Chemical*
 - Complex: Quercetin_{Disease} inhibits the reaction
 - [[24-hydroxycholesterol_{Chemical} co-treated with
 - 27-hydroxycholesterol_{Chemical} co-treated with
 - cholest-5-en-3 beta,7 alpha-diol_{Chemical}]

results in increased expression of ITGB1Gene mRNA]

CTD Derivation Target: ChemDisGene

- Only Binary Relationships, associated with Abstracts (not full-text)
- Reduced Relation Types:
 - Chemical Disease: 2 types
 - Chemical Gene: 6 types * (up to 3 degrees: affects, {increases, decreases})
 - Gene Disease: 2 types
- Entities in Relationships: Detect and link all mentions

Derivation from CTD

Relationship Parser

• Abstract fine-grained CTD relationships to reduced types

• Extract Binary relationships from complex and nested interactions in CTD

Complex nested interaction in CTD:

Quercetin_{Disease} inhibits the reaction

[[24-hydroxycholesterol_{Chemical} co-treated with 27-hydroxycholesterol_{Chemical} co-treated with cholest-5-en-3 beta,7 alpha-diol_{Chemical}]

results in increased expression of ITGB1_{Gene} mRNA]

Extracted binary relationships:

expression-increases(24-hydroxycholesterol, ITGB1) expression-increases(27-hydroxycholesterol, ITGB1) expression-increases(cholest-5-en-3 beta,7 alpha-diol, ITGB1)

Entity Linking and Distant Alignment

- PubTator Central used to link mentions of
 - Chemicals (MeSH),
 - Diseases (MeSH and OMIM), and
 - Genes/Proteins (NCBI Gene)
- Alignment to extracted Relationships:
 - Reject relationships whose entities not detected in abstract
- Noisy association: the abstract text may not actually express the relationship.
 - 78% confidence based on curated sample

Document Selection

(Cz

Outline

- Task definition
- ChemDisGene: Automated Derivation
- ChemDisGene: Manual Curation Process
- Dataset Statistics
- Benchmark Models

Annotation Guideline examples

A: Don't record investigated or motivating relationships that remain unknown and hypothetical.

"Gene A is a therapeutic target for treatment of Disease X; it may therefore have a potential role in treatment of Disease Z."

Record a relationship between Gene A and Disease X; but not between Gene A and Disease Z.

B: Inferring a relationship across sentences.

"We have previously identified a panel of fusion genes in aggressive prostate cancers. In this study, we showed that ... CCNH-C5orf30 and TRMT11-GRIK2 gene fusions were found in breast cancer, colon cancer, ... "

Record a 'Gene-Disease: marker/mechanism' *relationship between C5orf30 and prostate cancers*.

Annotator UI: Approve CTD-derived Reln

PMID = 30236862	
The PPARGC1A locus and CNS-specific PGC-1alpha isoforms are associated with Parkinson's Disease .	
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. PGC-1alpha, encoded by PPARGC1A, is a transcriptional co-activator that has been implicated in the pathogenesis of neurodegenerative discovered multiple new PPARGC1A transcripts that initiate from a novel promoter located far upstream of the reference gene promoter, are CNS-specific and are more abundant than reference gene transcripts in whole brain. These CNS-specific reference gene transcripts in 5 brain regions of 21, 8, and 13 deceased subjects with idiopathic PD., Lewy body dementia and controls without neurodegenerative disorders, respectively. We observed reductions of CNS-specific transcript in factors by full-length proteins in transfection assays. In two established animal models of PD, the PPARGC1A expression profiles differed from the profile in human PD in that the levels of CNS- and reference gene is neveral brain regions. Furthermore, we identified haplotypes in the CNS-specific region of PPARGC1A that appeared protective for PD in a clinical cohort and a post-mortem sample (P = .0002). Thus, functional and genetic s CNS-specific PPARGC1A locus in PD.	Abstract, with mentions underlined, Types color-coded
Concepts in document Genes I. 10891: PPARG coactivator 1 alpha [PPARGC1A] (PPARGC1A, PGC-1alpha) Diseases I. MESH:D010300: Parkinson Disease (PD, Parkinson's disease) 2. MESH:D019635: Neurodegenerative Diseases (neurodegenerative disorders, neurodegenerative disease) 3. MESH:D020961: Lewy Body Disease (Lewy body dementia)	Entities linked in the abstract
Relations Added by: CTD Gene: 10891 PPARG coactivator 1 alpha [PPARGC1A] Parkinson Disease Notes: Cene: 10891 Cene: 10891 Parkinson Disease Relation: marker/mechanism Delete this relation Notes: Delete this relation Notes: Delete this relation	Relationships derived from CTD

5/8/22

Annotator UI: Add missing ('New') Relationships

	PMID = 30236862				
	The PPARGC1A locus and CNS-specific PGC-1alpha isoforms are associat Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. PGC-1alpha, encoded by discovered multiple new PPARGC1A transcripts that initiate from a novel promoter located far upstream of the reference gen main full-length and several truncated isoforms via alternative splicing. Truncated CNS-isoforms include 17 kDa proteins that I reference gene transcripts in 5 brain regions of 21, 8, and 13 deceased subjects with idiopathic PD , Lewy body dementia a isoforms) only in the substantia nigra pars compacta of PD and Lewy body dementia . However, in the substantia nigra and transcription factors by full-length PGC-1alpha proteins in transfection assays. In two established animal models of PD , the decreased in several brain regions. Furthermore, we identified haplotypes in the CNS-specific region of PPARGC1A that appr CNS-specific PPARGC1A locus in PD .	lers . We recently ranscripts encode two evels of CNS- and oding full-length -activation of several e transcripts were support a role of the			
Selecting Entities will highlight mentions	Concepts in document Genes Concepts Genes Concep	New Relation Gene: 10891 PPARG coactivator 1 alpha [PPARGC1A] Disease: MESH:D019636 Neurodegenerative Diseases Notes:	✓ Select a Relation Type Chemical_Disease: marker/mechanism Chemical_Disease: therapeutic Chemical_Gene: increases expression Chemical_Gene: affects expression Chemical_Gene: increases activity	Cura Rela	ator can select ation Type
	3. MESH:D020961: Lewy Body Disease (Lewy body dementia) Relations Added by: CTD Gene: 10891 PPARG coactivator 1 alpha [PPARGC1A] Parkinson Disease Notes:	Add Relation	Chemical_Gene: decreases activity Chemical_Gene: affects activity Chemical_Gene: increases metabolic_processing Chemical_Gene: decreases metabolic_processing Chemical_Gene: affects metabolic_processing Chemical_Gene: decreases transport Chemical_Gene: decreases transport Chemical_Gene: affects transport Chemical_Gene: affects transport Chemical_Gene: affects localization Chemical_Gene: affects localization		

5/8/22

Annotator UI: Singleton Review

PMID = 15078100

Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines .

Quinone oxidoreductase 2 (QR2) purified from human red blood cells was recently shown to be a potential target of the quinoline antimalarial compounds [Graves et al., (2002) Mol. Pharmacol. 62, 1364]. QR2 catalyzes the two-electron reduction of menadione via the oxidation of N-alkylated or N-ribosylated nicotinamides . To investigate the mechanism and consequences of inhibition of QR2 by the quinolines further, we have used steady-state and transient-state kinetics to define the mechanism of QR2. Importantly, we have shown that QR2 when isolated from an overproducing strain of E. coli is kinetically equivalent to the enzyme from the native human red blood cell source. We observe ping-pong kinetics consistent with one substrate/inhibitor binding site that shows selectivity for the oxidation state of the FAD cofactor, suggesting that selective inhibition of the liver versus red blood cell forms of malaria may be possible. The reductant N-methyldihydronicotinamide and the inhibitor primaquine bind exclusively to the exducised enzyme. In contrast, the inhibitors quinacrine and chloroquine bind exclusively to the reduced enzyme. The quinone substrate menadione, on the other hand, binds nonspecifically to both forms of the enzyme. Single-turnover kinetics of the reductive half-reaction are chemically and kinetically competent and confirm the inhibitor selectivity seen in the steady-state experiments. Our studies shed light on the possible in vivo potency of the quinolines and provide a foundation for future studies aimed at creating more potent QR2 inhibitors and at understanding the physiological significance of QR2 .

Approved Relations

Singleton Relations to Curate

Added by: Alison_Jee		
Chemical: MESH:D024483 Vitamin K 3	Gene: 4835 N-ribosyldihydronicotinamide:quinone reductase 2 [NQO2]	Relation: affects^binding
Creator's Notes:		
Notes: The quinone substrate menace nonspecifically to both for	dione, on the other hand, binds rms of the enzyme.	Accept this relation Reject this relation Reset review of this relation
Added by: Parasvi_Patel		
Chemical: MESH:C037219 quinoline	Gene: 4835 N-ribosyldihydronicotinamide:quinone reductase 2 [NQ02]	Relation: affects^binding
Creator's Notes:		
Notes:		 Accept this relation Reject this relation Reset review of this relation

Reviewer can Accept or Reject the singleton Relationship

Curation: Annotation Agreement

	Curators				
Relationships	А	В	С	D	E
All	0.85	0.84	0.83	0.88	0.88
CTD-derived	0.99	0.96	0.97	0.99	0.96
New	0.76	0.77	0.69	0.82	0.83

Agreement F1 scores for the 5 annotators against the 'majority-approved' reference subset.

Agreement for CTD-derived relationships (prompted in curation UI) is higher than for New relationships (curator has to enter the new relationship).

Outline

- Task definition
- ChemDisGene: Automated Derivation
- ChemDisGene: Manual Curation Process
- Dataset Statistics
- Benchmark Models

Data Statistics: Highlights

- Distantly supervised *training* data: 76,942 abstracts with entity linking from PubTator and 167k relation labels from CTD
- Manually curated *test* data: 523 abstracts (3,911 relationships).
- 18 relation types among Chemicals, Diseases, Genes/Gene products

Corpus Statistics

	(Curated		
	Train	Dev	Test	Corpus
Nbr. abstracts	76,942	1,521	1,939	523
Abstracts w/o relations	7,244	397	436	5
Nbr. relationships	167,005	3,290	5,116	3,911
Unique relationships	93,801	3,127	4,801	3,806
Total entity mentions	1,532,117	36,114	49,839	14,248
Chemicals	686,102	13,986	19,895	5,739
Diseases	478,397	8,962	11,750	2,931
Genes	367,618	13,166	18,194	5,578
Unique entities in relationships	14,991	1,894	2,345	1,875
Chemicals	7,187	759	999	670
Diseases	2,413	283	287	318
Genes	5,391	852	1,059	887

Distr. Of Relationships, CTD-derived Corpus

5/8/22

Distr. Of Relationships, Curated Corpus

Chemical-Disease	CTD (%)	New (%)
marker/mechanism	16.4	16.6
therapeutic	12.0	10.4
Chemical-Gene	CTD-derived	New
activity - affects		1.2
activity - decreases	7.3	8.3
activity - increases	7.8	8.7
binding - affects	6.7	4.3
expression - <i>affects</i>	0.6	2.8
expression - <i>decreases</i>	13.1	10.4
expression - increases	18.4	11.8
localization - affects	1.5	0.8
metabolic_processing - affects		0.8
metabolic_processing - decreases	1.5	1.7
metabolic_processing - increases	4.0	3.0
transport - affects		0.8
transport - decreases		0.6
transport - increases	0.9	1.1
Gene-Disease	CTD-derived	New
marker/mechanism	9.3	14.1
therapeutic	0.5	2.9

Nbr. of Relationships per Document

Outline

- Task definition
- ChemDisGene: Automated Derivation
- ChemDisGene: Manual Curation Process
- Dataset Statistics
- Benchmark Models

PubmedBert

Bi-Affine Relation Attention Networks (BRAN)

Transformer-based Text Encoder

PubmedBert + BRAN

BERT-based Text Encoder

Benchmark RE Model Results

	Micro					Macro	
Model	P	R	F1	Avg. P	Р	R	F1
CTD-derived corpus: 'dev' split / 'test' split							
BRAN	32.1 / 31.7	46.3 / 44.2	37.9 / 36.9	28.4 / 27.9	25.9 / 23.6	32.3 / 30.1	28.2 / 26.0
PubmedBert	50.3 / 49.6	59.3 / 56.1	54.5 / 52.6	50.3 / 50.1	43.6 / 39.0	50.3 / 48.4	44.9 / 41.7
PubmedBert + BRAN	53.9 / 53.9	61.0 / 57.3	57.3 / 55.6	54.0 / 54.3	45.0 / 42.7	54.1 / 50.4	48.7 / 44.4
Curated corpus: CTD-derived relationships only / All relationships							
BRAN	24.4 / 41.8	45.8 / 26.6	31.8 / 32.5	28.1 / 33.5	20.3 / 37.2	35.7 / 22.5	24.5 / 25.8
PubmedBert	43.0 / 64.3	61.7/31.3	50.7 / 42.1	50.7 / 46.9	34.7 / 53.7	53.4 / 32.0	39.6 / 37.0
PubmedBert + BRAN	46.5/70.9	61.1/31.6	52.8 / 43.8	53.0 / 50.6	45.8 / 69.8	59.0 / 32.5	47.0 / 40.5

Model Performance per Relation Type

Metrics for PubmedBert + BRAN on the Curated Corpus,

sorted on decreasing relation frequency in Training data.

Relation Type	F1
Chemical-Disease : marker/mechanism	54.1
Chemical-Disease : therapeutic	45.5
Chemical-Gene : expression - increases	58.2
Chemical-Gene : expression - decreases	61.6
Gene-Disease : marker/mechanism	47.1
Chemical-Gene : activity - increases	52.4
Chemical-Gene : activity - decreases	56.3
Chemical-Gene : metabolic_processing - increases	36.4
Chemical-Gene : binding - affects	58.1
Chemical-Gene : transport - increases	36.1
Chemical-Gene : metabolic_processing - decreases	34.4
Chemical-Gene : localization - affects	48.9
Chemical-Gene : expression - affects	0.4
Gene-Disease : therapeutic	28.6

Thankyou!

dataset: https://github.com/chanzuckerberg/ChemDisGene

