Machine Intelligence lab

Modality Alignment between Deep Representations for Effective Video-and-Language Learning

HYEONGU YUN YONGIL KIM KYOMIN JUNG

SEOUL NATIONAL UNIVERSITY Department of Electrical and Computer Engineering

Multi-modality Tasks: Video-QA

- •Video-Question Answering:
 - •Given dataset {Video clip, Description, Query, Answer candidates},
 - •Choose the most appropriate answer among the candidates.

Common Benchmark: TVQA*

*Lei et al., Tvga: Localized, compositional video guestion answering., EMNLP 2018

Computer Engineering

Multi-modal Transformers

•Common structures to handle Video-and-Language modalities.

Attention Mechanism for Multi-modality

- •Potential hazard of the previous cross-modality attention:
- •There is a possible difference between
- the "structure" of Video representation vectors and
- the "structure" of Text representation vectors.
- •This difference may cause a side-effect of the attention mechanism, which is

based on the cosine similarity.

Centered Kernel Alignment

- •Centered Kernel Alignment (CKA)*:
- •A similarity measure between deep neural networks.
- •A method to compare the inter-example similarity structures.
- •Pros. of CKA:
- •Robustness: CKA can measure similarity between two representational spaces with a small amount of data.
- We can apply CKA in a mini-batch.
- •Differentiability: CKA is computed by simple differentiable equations.

• We can optimize CKA by common frameworks with gradient descent.

*Kornblith et al., Similarity of neural network representations revisited., ICML 2019

Machine Intelligence lab

Centered Kernel Alignment

- •Centered Kernel Alignment (CKA)*:
- •Similarity between the inter-example similarity structures.

$$\begin{split} &\left\langle \operatorname{vec}(XX^{\mathrm{T}}), \operatorname{vec}(YY^{\mathrm{T}}) \right\rangle = \operatorname{tr}(XX^{\mathrm{T}}YY^{\mathrm{T}}) = ||Y^{\mathrm{T}}X||_{\mathrm{F}}^{2} \\ &\left\| \operatorname{cov}(X_{i}^{T}, X_{j}^{T}) \right\|_{F}^{2} = \frac{1}{(n-1)^{2}} \operatorname{tr}(X_{i}X_{i}^{T}X_{j}X_{j}^{T}). \\ & \operatorname{HSIC}(K_{i}, K_{j}) = \frac{1}{(N-1)^{2}} \operatorname{tr}(K_{i}CK_{j}C), \\ & \operatorname{CKA}(K_{i}, K_{j}) = \frac{\operatorname{HSIC}(K_{i}, K_{j})}{\sqrt{\operatorname{HSIC}(K_{i}, K_{i})\operatorname{HSIC}(K_{j}, K_{j})}. \end{split}$$

*Kornblith et al., Similarity of neural network representations revisited., ICML 2019

Our Modality Alignment method

- •Add *CKA_loss* to the final loss (like a regularization term)
- •Let f_vid be a video encoder and f_text be a text encoder;
- •Then, with a sequence of video frames V=[v_1,…,v_L] and a sequence of tokens T=[t_1,…,t_M], calculate $\mathcal{L}_{CKA} = CKA(f_{vid}(V), f_{text}(T))$.
- •Add $-\lambda_{cka} * \mathcal{L}_{CKA}$ to the final loss.

Applying CKA with Gradient Ascent: Synthetic dataset

- •Synthetic dataset (maximizing cosine similarity):
- •Examples of class 'A' are sampled from a multivariate normal dist.
- •Examples of class 'B' are sampled from a mixture of multivariate normal dist.
- •To simulate the "attention" golden-truth, we randomly assign one-to-one correspondences between each example of 'A' and 'B'.
- •The goal is to train two encoders for both 'A' and 'B' in the way that maximizes the cosine similarity.

Applying CKA with Gradient Ascent: Synthetic dataset

•Synthetic dataset (maximizing cosine similarity):

Machine Intelligence lab

SEOUL NATIONAL UNIVERSITY

Computer Engineering

Department of Electrical and

Applying CKA with Gradient Ascent: Real-world dataset (TVQA+)

•A baseline structure for Video-QA (STAGE*):

*Lei et al., Tvqa: Localized, compositional video question answering., EMNLP 2018

Machine Intelligence lab

Applying CKA with Gradient Ascent: Real-world dataset (TVQA+)

•Are there really the differences between Video representation and Text

representation? Yes.

Model	$CKA(Vid_{emb}, QA_{emb})$	$CKA(Sub_{emb}, QA_{emb})$	CKA(Cpt _{emb} ,QA _{emb})
	Multi-modality	Uni-modality(Text)	Uni-modality(Text)
TVQA _{abc}	0.3907	0.8798	-
$TVQA_{abc} + CKA$	0.7815	0.8528	-
STAGE	0.2694	0.8999	-
STAGE + Caption	0.3998	0.8625	0.8741
STAGE + Caption + CKA	0.6708	0.8878	0.9215

•Does our CKA optimization improve the final accuracy? Yes.

Model	QA Accuracy (%)
$TVQA_{abc}$	67.70
$TVQA_{abc} + CKA$	69.38
STAGE (video only)	52.75
STAGE (sub only)	67.99
STAGE	70.31
STAGE + CKA	72.89
STAGE + CKA + Caption	73.88

Table 2: VideoQA results evaluated with QA accuracy.

Summary

- •We show that CKA can align two embedding representations from different modalities.
- •We demonstrate that our Modality Alignment improves the performance in multi-modal tasks.

Thank You!

Hyeongu Yun youaredead@snu.ac.kr

Yongil Kim miles94@snu.ac.kr

Kyomin Jung kjung@snu.ac.kr

