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Multi-modality Tasks: Video-QA

*\/ideo-Question Answering:

*Given dataset {Video clip, Description, Query, Answer candidates},

*Choose the most appropriate answer among the candidates.

«Common Benchmark: TVQA*

(Wilson:)Your patient died, you ignore my

calls, and you won't open the door.
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Question

Answer 0
Answer 1
Answer 2
Answer 3

Answer 4

What room was Wilson breaking into when House found him?

The bedroom.
The bathroom
The living room
The kitchen.

The dining room.

x| ej et al., Tvga: Localized, compositional video question answering., EMNLP 2018
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Multi-modal Transformers

*Common structures to handle Video-and-Lanquage modalities.
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:Alex: There were two donors,
‘1zzie. Our heart flatlined... :
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Attention Mechanism for Multi-modality

*Potential hazard of the previous cross-modality attention:

*There 1s a possible difference between
the “structure” of Video representation vectors and

the “structure” of Text representation vectors.

*This difference may cause a side-effect of the attention mechanism, which 1s

based on the cosine similarituy.
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Centered Kernel Alignment

Centered Kernel Alignment (CKA)™:

A similarity measure between deep neural networks.

*A method to compare the inter-example similarity structures.

*Pros. of CKA:

*Robustness: CKA can measure similarity between two representational spaces

with a small amount of data.
«=>» We can apply CKA in a mini-batch.
-Differentiability: CKA is computed by simple differentiable equations.

«=>» We can optimize CKA by common frameworks with gradient descent.

xKornblith et al., Similarity of neural network representations revisited., ICML 2019
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Centered Kernel Alignment

Centered Kernel Alignment (CKA)™:

Simularity between the inter-example similarity structures.

(vec(X X 1), vec(YY!)) = tr( X XTYYT) = ||[YT X2
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HSIC(K;, K;) = str(K;CK;C),
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xKornblith et al., Similarity of neural network representations revisited., ICML 2019
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Our Modality Alignment method

*Add CKA_loss to the final loss (like a reqularization term)

*Let f_vid be a video encoder and f_text be a text encoder;

*Then, with a sequence of video frames V=[v_1,--,v_L] and a sequence of tokens

T=[t_1,t_M], calculate Loxas =CAAFia(V), frext (T)).

*Add — A kq * Lcga to the final loss.

Cross Modality Attention Module

‘ CKA LOSS \

Visual Modality Text Modality
Representation Representation
Visual Text
Embedding Embedding
Module Medule

-- - d“.hatbdm’-"‘found"him:t?:

Visual inputs Text inputs

N 1 L. Machine Intelligence lah



Applying CKA with Gradient Ascent: Synthetic dataset

Synthetic dataset (maximizing cosine similarity):

«Examples of class ‘A’ are sampled from a

multivariate normal dist.

sampled synthetic data

«Examples of class ‘B’ are sampled from a mixture

of multivariate normal dist. -

To simulate the “attention” golden-truth, we

randomly assign one-to-one correspondences

between each example of ‘A’ and ‘B’.

—:30 —3"0 —50 —]’.0 6 10 20 30 40

*The goal is to train two encoders for both ‘A’ and

‘B’ in the way that maximizes the cosine similarity.
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Applying CKA with Gradient Ascent: Synthetic dataset

Synthetic dataset (maximizing cosine similarity):

Epoch 1

Epoch 5

Epoch 10

Cosine Similarity only

CKA only

CKA+CosS5im

CKA: 0.498 [] Avg.Cos5im: 0.378

CKA: 0.950 [] Avg.Cos5im: 0.337

. CKA: 0,985 [1 Avg.Cos5im: 0.419
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Applying CKA with Gradient Ascent: Real-world dataset (TVQA+)

*A baseline structure

for Video-QA (STAGE™):
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x| ej et al., Tvga: Localized, compositional video question answering., EMNLP 2018
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Applying CKA with Gradient Ascent: Real-world dataset (TVQA+)

Are there really the differences between Video representation and Text

representation? Yes.

Model CKA(VidenlbeQAe-mb) CK-A(SUbembaQAe-mb) CK-A(CptembeQAe-mb)
Multi-modality Uni-modality(Text) Uni-modality(Text)

TVQA 0.3907 0.8798 -

TVQA, ;. + CKA 0.7815 0.8528 -

STAGE 0.2694 0.8999 -

STAGE + Caption 0.3998 0.8625 0.8741

STAGE + Caption + CKA 0.6708 0.8878 0.9215

*Does our CKA optimization improve the final accuracy? VYes.

Model QA Accuracy (%)
TVQA, . 67.70
TVQA, . + CKA 69.38
STAGE (video only) 52.75
STAGE (sub only) 67.99
STAGE 70.31
STAGE + CKA 72.89
STAGE + CKA + Caption 73.88
Table 2: VideoQA results evaluated with QA accuracy.
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Summary

‘We show that CKA can align two embedding representations from

different modalities.

‘We demonstrate that our Modality Alignment improves the performance

in multi-modal tasks.

Thank Youl!

Hyeongu Yun Yongil Kim Kyomin Jung
youaredead@snu.ac.kr miles94@snu.ac.kr kjung@snu.ac.kr
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