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Multi-modality Tasks: Video-QA

•Video-Question Answering: 

•Given dataset {Video clip, Description, Query, Answer candidates}, 

•Choose the most appropriate answer among the candidates.

•Common Benchmark: TVQA*
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*Lei et al., Tvqa: Localized, compositional video question answering., EMNLP 2018



Multi-modal Transformers

•Common structures to handle Video-and-Language modalities.
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Video Encoder Text Encoder



Attention Mechanism for Multi-modality

•Potential hazard of the previous cross-modality attention:

•There is a possible difference between 

the “structure” of Video representation vectors and 

the “structure” of Text representation vectors.

•This difference may cause a side-effect of the attention mechanism, which is

based on the cosine similarity.
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Centered Kernel Alignment 

•Centered Kernel Alignment (CKA)*:

•A similarity measure between deep neural networks.

•A method to compare the inter-example similarity structures.

•Pros. of CKA:

•Robustness: CKA can measure similarity between two representational spaces 

with a small amount of data.

•➔ We can apply CKA in a mini-batch.

•Differentiability: CKA is computed by simple differentiable equations.

•➔ We can optimize CKA by common frameworks with gradient descent.

5
*Kornblith et al., Similarity of neural network representations revisited., ICML 2019



Centered Kernel Alignment 

•Centered Kernel Alignment (CKA)*:

•Similarity between the inter-example similarity structures.
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*Kornblith et al., Similarity of neural network representations revisited., ICML 2019



Our Modality Alignment method

•Add CKA_loss to the final loss (like a regularization term)

•Let f_vid be a video encoder and f_text be a text encoder;

•Then, with a sequence of video frames V=[v_1,…,v_L] and a sequence of tokens 

T=[t_1,…,t_M], calculate ℒ𝐶𝐾𝐴 =CKA(𝑓𝑣𝑖𝑑 𝑉 , 𝑓𝑡𝑒𝑥𝑡(𝑇)).

•Add −𝜆𝑐𝑘𝑎 ∗ ℒ𝐶𝐾𝐴 to the final loss.
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Applying CKA with Gradient Ascent: Synthetic dataset

•Synthetic dataset (maximizing cosine similarity):

•Examples of class ‘A’ are sampled from a 

multivariate normal dist.

•Examples of class ‘B’ are sampled from a mixture 

of multivariate normal dist.

•To simulate the “attention” golden-truth, we 

randomly assign one-to-one correspondences

between each example of ‘A’ and ‘B’.

•The goal is to train two encoders for both ‘A’ and 

‘B’ in the way that maximizes the cosine similarity.
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Applying CKA with Gradient Ascent: Synthetic dataset

•Synthetic dataset (maximizing cosine similarity):
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Applying CKA with Gradient Ascent: Real-world dataset (TVQA+)

•A baseline structure for Video-QA (STAGE*):
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*Lei et al., Tvqa: Localized, compositional video question answering., EMNLP 2018



Applying CKA with Gradient Ascent: Real-world dataset (TVQA+)

•Are there really the differences between Video representation and Text 

representation? Yes.

•Does our CKA optimization improve the final accuracy? Yes.
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Summary

•We show that CKA can align two embedding representations from 

different modalities.

•We demonstrate that our Modality Alignment improves the performance 

in multi-modal tasks.

Thank You!
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