

Embeddings models for Buddhist Sanskrit

Ligeia Lugli, Matej Martinc, Andraž Pelicon, Senja Pollak

LREC 2022

NATIONAL ENDOWMENT FOR THE HUMANITIES This study was conducted at the *Mangalam Research Center* thanks to funding from the *NEH* (HAA-277246-21)

Our Focus: Buddhist Sanskrit

domain-specific variety of Sanskrit used in Indic Buddhist literature, esp. Mahāyāna.

Is characterized by

- Specialized vocabulary
- Vernacular influences
- Spelling variation

In this study we use the label Buddhist Sanskrit to refer to the language of Buddhist Sanskrit literature, regardless of the level of vernacular influence instantiated in individual texts

this includes but is not limited to Buddhist Hybrid Sanskrit

रातः तेतराज्ञासाई भा २ महाराज वारम्ससे तः तस्तात् भा २ देवस्तसे रगगावाहाड रे मिन् भास्प्रल चैत्यविगाजितलग्माक्ष उग्प सेवयामीति॥ ॥त्रीमान्महाछर्ग्यतमेख भास्तरदेव बर्म्सः॥वितिर्मितं स्वर्गछरेव मार्क्रान्छ गतालयंत त्रसिन्दिहारे खविगा खवा द्वसंघास्त्रिद्वारा तास्तुः॥ सद्वर्म्य खिप्रायां वामी दिहारो पक्षवर्गा नामः॥२ मंत्रति वहावन्द्रः। गत्रे द्व वृडाः प्रथितीतिभू तस्यत्ती ज्ञाविष्ठ जुनी प्रगविद्ध रवी स्त्री । ८॥ मातवा गीति तास्त्राच्छ रवी स्त्री गा प्रथा क्यात्रित्रास्त्रीच तत्यात्ती खत्री गा प्रथा निभू स्वा या छत्र तत्वात्ता व्यक्त महत्री॥ प्रथा आ त्रा छत्री स्त्रा वडा व्यव हाये तीस्त्रा॥ प्रथा । आ त्रखत्री दित्री यश्व स्वयंध

रजंगरागावाहाडरोपिवनविहार प्रावंश गाराजात्रया वद्धहासश्रहशाखर्गयहिनात अस्प्रेम्प्रयुक्तओजनम्प्याने प्रविशतः खहे क्षत्रे श्रीनेपपालेललिताछराखे तयदृने गोजा। श्रहिमवर्गाप्रिधमुप्रकारा विहार जमानः श्रीशाक्वसि हंमततनिर्नेशा। ६ ॥ काजिनसेवकाश्वातसिर्विहारादिशिज तसिविहार दिशिवछकोरो श्रीवज्रश्ररु तिदाताछरार्गाशिल्पकर्तातिराक्तिः ॥ ६ ॥ नन्छतीरद्वछव्याखः कल्प्रसंखितत्वरः मती । कनि छोदान वज्रश्व दानधर्मेख तब तिव्रता । रत्युक्रमार्गाना विदयो आर्यासि छत्रातरः हरामा या तत्वती छर्गालाछ छ वज्रति विक्रतः । ख्रुम्याया तत्वती दश्व

वर्षाठकयका॥ १६॥आतुर्भायांतृयेशचवसुधाराविचक्षरागा। लक्ष्मीमायाद्वितीयाच लक्ष्मावशोभनीसती भ १४ ॥ कुछेथकं कनेश्रीच अवती छमती मता। आतुष्युत्री मयजुतानी हेराता नीत मध्यमा ॥१५ ॥धर्माता नी तती मद्य कुछेता नी वरीयजा। पंचमा भाममायाच दशवर्षा वक्तयका। १८ ४ पुत्री गजे कवज्य चेर्यथकं सुलक्षरागी। लक्षी कमारे ना नीव रियजा। पंचमा भाममायाच दशवर्षा वक्तयका। १८ ४ पुत्री गजे कवज्य चेर्यथकं सुलक्षरागी। लक्षी कमारे ना मवि मध्ये जाता विचक्षरागे। १० ॥मानस्यतिकनेश्री व कुटुम्वमदिवा रिगो। तानमाया चत्र्यीव सातृवाल कुमारिका। १० ॥ भीवा इक्तकप्राधी व उठ्ठवज्यसम्बता ॥ दातकमाधी बाता व्रदान केव्र प्रजातका। १८ ॥ सकलम रिजने क्रेसिव तेष्ठ प्रित्र मे श्रित्र कुप्राधी व उठ्ठवज्यसम्बता ॥ दातकमाधी बाता व्रदान केव्र प्रजातका। १८ ॥ सकलम रिजने क्रेसिव त्र प्रक्र ताः छगत गता सम्पूर्तम्य प्रस्तादिवानि । सुरस्त क्रित्र सम्पत्त भो जने कारा विद्यो। इति मन सिधा ना पार्थया म्य इडाव ताः छगत गता सम्पूर्तम्य प्रस्तादिवानि । सुरस्त क्रि ने क्या क्रे के क्रे प्रक्षा का माधी व्या स्त्र क्षत्र के क्रे भाव का प्रधाय संवादा के क्षत्रा ने कारा विद्या ताः छगत गता सम्पूर्तम्य प्रस्ता क्रिका के स्वत्र स्व सम्पत्त क्षेत्र के क्रे के त्र क्रे के त्र स्वा माधी वाम संवादा क्री का क्र ताः श्रुगत्र याति के इनिधि दावि गगती क्रे स्वति व्या क्रे क्रेक्त प्रसार खेत्र स्वत्र करा के स्त्रा माधी विदित्य क्रि के स्वात्र या जाति का त्र या क्रे क्रे क्रे क्रे क्रि के स्वत्र स्वात्र या गति क्रा क्रि क्रे स्वात्र या वे भाल ने पाले क्रे क्रे विधि व्या क्रिय विषया त्रा त्रा सार क्रेक्त यहा के खान व दा ये ही क्रित क्रे क्रा क्र

Our goal: comparing embeddings models

compare the performance of different static and contextual embeddings models trained on a Buddhist Sanskrit corpus, and more generally on *small historical corpora*

Our Corpora

A corpus of **Buddhist** Sanskrit

- tokenized & lemmatized
- 311 texts
- 6.7 million words
- Most texts dating II BCE-XII CE

A corpus of general Sanskrit

- tokenized
- 342 texts
- 13.3 million words
- Most texts dating VI CE-XII CE

fig: Buddhist corpus by genre. source: bit.ly/VisualDictionary-BuddhistSanskrit

Contextual embedding models - training

- Two models, BERT and GPT-2:
 - a. We expect difference in performance due to difference in models' size and language model objective
- Two training regimes:
 - a. training just on Buddhist Sanskrit corpus
 - Byte pair tokenizer training vocabulary size of 30.000 tokens
 - masked (BERT) or autoregressive (GPT-2) language model objective
 - b. pretraining on the general Sanskrit corpus
 - Byte pair tokenizer training on the concatenation of general and Buddhist Sanskrit corpus - vocabulary size of 30.000 tokens
 - Models are pretrained on the general corpus before training on the Buddhist corpus.

Contextual embedding models - embedding extraction

- We test three distinct embedding generation regimes, following Vulić et al. (2020):
 - a. averaging first six encoder layers
 - b. averaging last four encoder layers
 - c. averaging all encoder layers
- Generated contextual embeddings are averaged across the corpus on the level of word's lemma
- Final representation is a single wordtype level embedding for each word's lemma.

Static Embeddings Models

- Tested two static embeddings algorithms Word2vec and fastText
 - a. We assume fastText algorithm will produce better embeddings as Buddhist Sanskrit is a highly inflectional language
- Performed hyperparameter optimization for both algorithms
 - fastText and word2vec: model type (Skipgram or CBOW), embeddings dimensions, window size, number of training epochs
 - b. fastText only: minimum subword length, maximum subword length
 - c. Optimization performed over 100 runs; hyperparameters were tested on a small subset of the analogy task
 - d. Compared the optimized model with the model trained using hyperparameters from related work

Evaluation data

- Analogy task
 - 24 sets of 5 morphologically related lemmata derived from a single root: a verb, a past participle, a noun, an action noun in *-ana* and an agentive in *-in* e.g. root = √klp, set = *kalp kalpita kalpa kalpana kalpin*
 - Few roots appear in the corpus in all 5 forms and some forms are rare so, this dataset is small and includes low-frequency lemmata

- Simlex task
 - 98 noun pairs, most very frequent in the Buddhist corpus
 - Scored for semantic similarity on a 0-6 scale
 - 4 annotators, one discarded due to low inter-annotator agreement

Semantic similarity in ancient languages: a caveat

It is extremely difficult to gauge semantic similarity in ancient languages

Especially with highly polysemic vocabulary, as in Buddhist Sanskrit

To facilitate the task annotators were asked to

- take into account contextual and paradigmatic relations
- focus on the sense a word typically expresses in Buddhist literature

Still some ambiguity remained, e.g. for the pair *mārga-gati*

Evaluation setting

- Analogy task
 - Given a triplet of words where the first pair defines a relationship, the model has to retrieve the word which is in the same relationship with the third word.

kalpa kalp sm<u>r</u>ti ? = smar

- Defined three relationships: verb past participle; noun verb; noun past participle.
- For each relationship, all possible triplets from the analogy dataset were constructed for a total of 552 triplets per task.

Evaluation setting

- Simlex task
 - Given two words, the task is to give a score of their semantic similarity.

```
(vitarka, vikalpa) = similarity score
```

- Similarity is measured by cosine similarity ranging from 0 (no similarity in meaning) to 1 (same meaning).
- Model scores are compared to the annotator scores from the simlex test dataset using correlation analysis.

יי ((א

Results

• Analogy task

	verb-noun		verb-ppp		ppp-noun	
Model	Acc@1	Acc@10	Acc@1	Acc@10	Acc@1	Acc@10
fastText (default)	0.0127	0.1685	0.0072	0.2409	0.0000	0.0743
fastText	0.0562	0.2301	0.0000	0.1993	0.00	0.0888
word2vec (default)	0.0779	0.1993	0.0616	0.2156	0.0562	0.1775
word2vec	0.0707	0.2210	0.0616	0.2047	0.0489	0.1558
BERT pretrained all layers	0.1214	0.4275	0.2464	0.5725	0.1105	0.4149
BERT pretrained first 6 layers	0.1051	0.3841	0.2065	0.5489	0.0507	0.3859
BERT pretrained last 4 layers	0.1286	0.4058	0.2301	0.5072	0.1975	0.4239
BERT all layers	0.1105	0.3533	0.1649	0.3714	0.0562	0.3134
BERT first 6 layers	0.1014	0.3460	0.1576	0.3750	0.0417	0.2953
BERT last 4 layers	0.0978	0.2880	0.1123	0.3043	0.1014	0.2772
GPT-2 pretrained all layers	0.0707	0.1993	0.0562	0.2482	0.0217	0.1830
GPT-2 pretrained first 6 layers	0.0616	0.1812	0.0652	0.2591	0.0163	0.1594
GPT-2 pretrained last 4 layers	0.0688	0.1902	0.0634	0.2228	0.0199	0.1775
GPT-2 all layers	0.0236	0.0652	0.0072	0.0399	0.0145	0.0670
GPT-2 first 6 layers	0.0308	0.0761	0.0072	0.0453	0.0163	0.0707
GPT-2 last 4 layers	0.0199	0.0670	0.0054	0.0344	0.0145	0.0580

Results

• Simlex task

Model	Correlation	P-value
fastText (default)	0.6824	0.0000000
fastText	0.6821	0.0000000
word2vec (default)	0.6672	0.0000000
word2vec	0.6647	0.0000000
BERT pretrained all layers	0.6492	0.0000000
BERT pretrained first 6 layers	0. <u>6644</u>	0.0000000
BERT pretrained last 4 layers	0.5554	0.0000000
BERT all layers	0.5753	0.0000000
BERT first 6 layers	0.6313	0.0000000
BERT last 4 layers	0.4660	0.0000013
GPT-2 all layers	0.3401	0.0006114
GPT-2 first 6 layers	0.3674	0.0001979
GPT-2 last 4 layers	0.3225	0.0012023
GPT-2 pretrained all layers	0.5689	0.0000000
GPT-2 pretrained first 6 layers	0.5681	0.0000000
GPT-2 pretrained last 4 layers	0.5459	0.0000000
Average annotator correlation	0.8822	/

Static Embeddings - Impact of Hyperparameters

- We performed a correlation analysis between hyperparameters and model performance
- Used data from the 100 runs of hyperparameter optimization
- fastText:
 - a. embeddings dimension has the greatest effect on model performance (ρ = 0.5255, p-value = 1.98e-08)
 - b. CBOW models tend to outperform Skipgram models ($\rho = -0.2276$, p-value = 0.0227)
 - c. minimum length of subwords (ρ = -0.2947, p-value = 0.003); possibly enables the model to cover larger proportion of out-of-vocabulary words
- word2vec:
 - a. choice of model has the greatest effect on model performance (CBOW; ρ = -0.6364, p-value = 1.11e-12)
 - b. larger training epochs correlate with better models (ρ = 0.5596, p-value = 1.43e-09); may indicate word2vec is less prone to overfitting

Conclusions

- For semantic similarity fastText embeddings yield the best results, for word analogy tasks, BERT embeddings work the best.
- The optimal layer combination for contextual embedding construction is task dependent.
- **Pretraining** the contextual embeddings models on a general reference corpus of Sanskrit is **beneficial**.
- In our setting, **hyperparameter optimization** does **not** produce significantly better static embeddings models when compared with default hyperparameters.

Thanks

special thanks to

Bruno Galasek-Hul Luis G. Quiñones Jai Paranjape

For their work on the evaluation datasets used in this study