MLQE-PE : A Multilingual Quality Estimation and Post-Editing Dataset

Marina Fomicheva, Shuo Sun, Erick Fonseca, **Chrysoula Zerva**, Frédéric Blain, Vishrav Chaudhary, Francisco Guzmán, Nina Lopatina, André F. T. Martins and Lucia Specia

LREC, 2022

source sentence

Wolves may scavenge from leopard kills Wölfe können von Leoparden töten

Wolves may kill from leopards MT sentence

Wolves may scavenge from leopard kills Wölfe können von Leoparden töten

source sentence

Wolves may kill from leopards MT sentence

Wölfe fressen zuweilen Aas von Leoparden

Wolves sometimes eat carrion of leopards human reference

MT Evaluation is not always possible/desired:

MT Evaluation is not always possible/desired:

▶ Expensive and time consuming to obtain references

MT Evaluation is not always possible/desired:

- ▶ Expensive and time consuming to obtain references
- On-the-fly translation
 - ► Flag potentially critical errors
 - Decide which segments need human-editing

MT Evaluation is not always possible/desired:

- ▶ Expensive and time consuming to obtain references
- On-the-fly translation
 - ► Flag potentially critical errors
 - Decide which segments need human-editing
- Zero-shot applications:
 - ► Apply to low-resource languages
 - Adapt to domains without human references

For each segment (source - MT sentence pair) we provide:

For each segment (source - MT sentence pair) we provide: **Sentence level scores:**

For each segment (source - MT sentence pair) we provide: **Sentence level scores:**

- ► Sentence level direct assessments (DA scores)
 - 3 annotators per segment \longrightarrow mean z-score as final value
 - Scale 0-100:

0							100
	incorrect translation	wrong meaning - few correct keywords	major mistakes	understandable but grammar errors/typos	correct semantics - minor errors	perfect translation	

For each segment (source - MT sentence pair) we provide: **Sentence level scores:**

- ► Sentence level direct assessments (DA scores)
 - 3 annotators per segment \longrightarrow mean z-score as final value
 - Scale 0-100:

- ► Human-targeted Translation Edit Rate (HTER)
 - Minimum number of edits needed to reach from the MT to the post-edited sentence
 - Normalised by sentence length \longrightarrow 0-1 scale

For each segment (source - MT sentence pair) we provide: **Sentence level scores:**

- ► Sentence level direct assessments (DA scores)
 - 3 annotators per segment \longrightarrow mean z-score as final value
 - Scale 0-100:

- ► Human-targeted Translation Edit Rate (HTER)
 - Minimum number of edits needed to reach from the MT to the post-edited sentence
 - Normalised by sentence length \longrightarrow 0-1 scale

Word level scores:

For each segment (source - MT sentence pair) we provide: **Sentence level scores:**

- ► Sentence level direct assessments (DA scores)
 - 3 annotators per segment \longrightarrow mean z-score as final value
 - Scale 0-100:

- ► Human-targeted Translation Edit Rate (HTER)
 - Minimum number of edits needed to reach from the MT to the post-edited sentence
 - Normalised by sentence length \longrightarrow 0-1 scale

Word level scores:

- ▶ Binary OK or BAD tags
 - ▶ On the target (MT) tokens: Wrong or irrelevant tokens
 - On the target gaps (between tokens): Missing tokens
 - ▶ On the source tokens: Mistranslated or non-translated tokens

- Extract alignments between PE and MT, SRC
 - \blacktriangleright MT-PE \rightarrow Monolingual: TERcom

 - Source-MT
 Source-PE
 Bilingual: SimAlign

- Extract alignments between PE and MT, SRC
 - \blacktriangleright MT-PE \rightarrow Monolingual: TERcom

 - Source-MT
 Source-PE
 Bilingual: SimAlign

- Extract alignments between PE and MT, SRC
 - \blacktriangleright MT-PE \rightarrow Monolingual: TERcom

 - Source-MT
 Source-PE
 Bilingual: SimAlign

How do we extract OK and BAD tags from post-edited sentences?

- Extract alignments between PE and MT, SRC
 - \blacktriangleright MT-PE \rightarrow Monolingual: TERcom
 - Source-MT
 Source-PE
 Bilingual: SimAlign

Wolves may scavenge from leopard kills

SRC

- Extract alignments between PE and MT, SRC
 - $\blacktriangleright \mathsf{MT}\operatorname{-}\mathsf{PE} \longrightarrow \mathsf{Monolingual: TERcom}$
 - Source-MT
 Source-PE
 Bilingual: SimAlign

- Extract alignments between PE and MT, SRC
 - $\blacktriangleright \mathsf{MT}\operatorname{-PE} \longrightarrow \mathsf{Monolingual: TERcom}$
 - Source-MT
 Source-PE
 Bilingual: SimAlign

- Extract alignments between PE and MT, SRC
 - $\blacktriangleright \mathsf{MT}\operatorname{-PE} \longrightarrow \mathsf{Monolingual: TERcom}$
 - Source-MT
 Source-PE
 Bilingual: SimAlign

- Extract alignments between PE and MT, SRC
 - $\blacktriangleright \mathsf{MT}\operatorname{-PE} \longrightarrow \mathsf{Monolingual: TERcom}$
 - Source-MT
 Source-PE
 Bilingual: SimAlign

- Extract alignments between PE and MT, SRC
 - $\blacktriangleright \mathsf{MT}\operatorname{-PE} \longrightarrow \mathsf{Monolingual: TERcom}$
 - Source-MT
 Source-PE
 Bilingual: SimAlign

How do we extract OK and BAD tags from post-edited sentences?

- Extract alignments between PE and MT, SRC
 - $\blacktriangleright \mathsf{MT}\operatorname{-PE} \longrightarrow \mathsf{Monolingual: TERcom}$
 - Source-MT
 Source-PE
 Bilingual: SimAlign

Fomicheva, Sun, Fonseca, Zerva, Blain, Chaudhary, Guzmán, Lopatina, Ma MLQE-PE : A Multilingual QE and PE Dataset 6 / 19

How do we extract OK and BAD tags from post-edited sentences?

- Extract alignments between PE and MT, SRC
 - $\blacktriangleright \mathsf{MT}\operatorname{-PE} \longrightarrow \mathsf{Monolingual: TERcom}$
 - Source-MT
 Source-PE
 Bilingual: SimAlign

Fomicheva, Sun, Fonseca, Zerva, Blain, Chaudhary, Guzmán, Lopatina, Ma MLQE-PE : A Multilingual QE and PE Dataset 6 / 19

How do we extract OK and BAD tags from post-edited sentences?

- Extract alignments between PE and MT, SRC
 - $\blacktriangleright \mathsf{MT}\operatorname{-PE} \longrightarrow \mathsf{Monolingual}: \mathsf{TERcom}$
 - Source-MT
 Source-PE
 Bilingual: SimAlign

Fomicheva, Sun, Fonseca, Zerva, Blain, Chaudhary, Guzmán, Lopatina, Ma MLQE-PE : A Multilingual QE and PE Dataset 6 / 19

Annotations by language pair

Annotations by language pair

Annotations by language pair

High resource

English - German **English - Chinese** English - Japanese Russian - English Estonian - English English - Czech Romanian - English Pashto - English Sinhala - English Khmer - English Nepali - English Low no resource Resource

Additional information

Additional information

- NMT models used to obtain the translations
 - Enable glass-box approaches
 - NMT uncertainty as a proxy to quality

Additional information

- NMT models used to obtain the translations
 - Enable glass-box approaches
 - NMT uncertainty as a proxy to quality
- Independent annotator scores (DA) for each segment
 - Annotator disagreement \rightarrow STD scores
 - Aleatoric uncertainty
 - Proxy to noisy/complex segments

Additional information

- NMT models used to obtain the translations
 - Enable glass-box approaches
 - NMT uncertainty as a proxy to quality
- Independent annotator scores (DA) for each segment
 - Annotator disagreement \rightarrow STD scores
 - Aleatoric uncertainty
 - Proxy to noisy/complex segments

motivate uncertainty aware approaches

Additional information

- NMT models used to obtain the translations
 - Enable glass-box approaches
 - NMT uncertainty as a proxy to quality
- Independent annotator scores (DA) for each segment
 - Annotator disagreement \rightarrow STD scores
 - Aleatoric uncertainty
 - Proxy to noisy/complex segments
- Document level information
 - Provision of document ids
 - Use title/surrounding sentences

motivate uncertainty aware approaches

Additional information

- NMT models used to obtain the translations
 - Enable glass-box approaches
 - NMT uncertainty as a proxy to quality
- Independent annotator scores (DA) for each segment
 - Annotator disagreement \rightarrow STD scores
 - Aleatoric uncertainty
 - Proxy to noisy/complex segments
- Document level information
 - Provision of document ids
 - Use title/surrounding sentences

motivate uncertainty aware approaches

motivate context aware approaches

Additional information

- NMT models used to obtain the translations
 - Enable glass-box approaches
 - NMT uncertainty as a proxy to quality
- Independent annotator scores (DA) for each segment
 - Annotator disagreement \rightarrow STD scores
 - Aleatoric uncertainty
 - Proxy to noisy/complex segments
- Document level information
 - Provision of document ids
 - Use title/surrounding sentences

 \checkmark Useful features for quality estimation

motivate uncertainty aware approaches

motivate context aware approaches

DA-HTER score correlations

High-resource language pairs:

- Different score distributions
- HTER scores (horiz.) are skewed to zero
- Upper-left corner \rightarrow high-quality translations

DA-HTER score correlations

Fomicheva, Sun, Fonseca, Zerva, Blain, Chaudhary, Guzmán, Lopatina, Ma MLQE-PE : A Multilingual QE and PE Dataset 10 /

More on scores and correlations

	Avg. DA \uparrow	Avg. HTER \downarrow		Pearson	Spearman
En-De	82.61	0.18	En-De	-0.42	-0.48
Ro-En	69.18	0.24	Ro-En	-0.76	-0.71
En-Ja	67.96	0.36	En-Ja	-0.14	-0.11
En-Cs	66.94	0.26	En-Cs	-0.41	-0.46
En-Zh	62.86	0.23	En-Zh	-0.21	-0.16
Et-En	60.09	0.29	Et-En	-0.61	-0.63
Ps-En	53.53	0.53	Ps-En	-0.71	-0.67
Si-En	51.42	0.59	Si-En	-0.29	-0.28
Km-En	46.58	0.65	Km-En	-0.49	-0.43
Ne-En	36.51	0.66	Ne-En	-0.54	-0.49
Ru-En	68.67	0.23	Ru-En	-0.51	-0.47

Discrepancies

Case 1: Minimal post-editing

- Average DA score: $0.33 \rightarrow \text{low quality}$
- ▶ HTER score from PE: 0.33 \rightarrow high quality

Discrepancies

Case 2: Heavy post-editing

The two battled to a standstill and eventually rendered one another comatose. MT 这两个人的战斗陷入停顿,最后彼此昏迷不已. The two people's battle fell into a standstill, finally both were in a coma. PE 两人对战陷入僵局,最后双双昏倒。 The two people battled to a standstill and both fell into a coma.

- Average DA score: 0.73 \longrightarrow high quality
- HTER score from PE: 1.00 \longrightarrow low quality

Baseline model

One of the main goals is to support the development of better QE models

- Predictor-Estimator architecture
 - Based on OpenKiwi
- Single head for sentence level DA
- Multitasking for:
 - Sentence-level HTER
 - Word-level tags

Baseline sentence-level results

Languages	Pearson $r \uparrow$	$RMSE\downarrow$	Languages	Pearson $r \uparrow$	$RMSE\downarrow$	
Dire	ect Assessme	nt	HTER			
En-De	0.403	0.433	En-De	0.529	0.129	
En-Zh	0.525	0.534	En-Zh	0.282	0.246	
Ru-En	0.677	0.492	Ru-En	0.448	0.188	
Ro-En	0.818	0.408	Ro-En	0.862	0.111	
Et-En	0.660	0.543	Et-En	0.714	0.149	
Ne-En	0.738	0.524	Ne-En	0.626	0.160	
Si-En	0.513	0.626	Si-En	0.607	0.159	
En-Cs	0.352	0.686	En-Cs	0.306	0.206	
En-Ja	0.230	0.617	En-Ja	0.098	0.232	
Km-En	0.562	0.614	Km-En	0.576	0.196	
Ps-En	0.476	0.711	Ps-En	0.503	0.290	
AVG	0.541	0.562	AVG	0.502	0.188	

Baseline word-level results

	Word	s in MT	Words in SRC		
Languages	$MCC \uparrow$	F_1 -Multi \uparrow	$ $ MCC \uparrow	F_1 -Multi \uparrow	
En-De	0.370	0.415	0.322	0.363	
En-Zh	0.247	0.308	0.241	0.295	
Ru-En	0.256	0.319	0.251	0.292	
Ro-En	0.536	0.553	0.511	0.539	
Et-En	0.461	0.512	0.405	0.459	
Ne-En	0.440	0.483	0.390	0.438	
Si-En	0.425	0.456	0.335	0.379	
En-Cs	0.273	0.372	0.224	0.312	
En-Ja	0.131	0.217	0.175	0.272	
Km-En	0.351	0.409	0.279	0.355	
Ps-En	0.313	0.425	0.249	0.361	
AVG	0.346	0.402	0.307	0.370	

- $\checkmark\,$ WMT Quality Estimation Shared Tasks
 - 2020 Edition: En-De, En-Zh, Et-En, Ne-En, Ro-En, Ru-En, Si-En
 - 2021 Edition: En-De, En-Zh, Et-En, Ne-En, Ro-En, Ru-En, Si-En, En-Cs, En-Ja, Km-En, Ps-En

- $\checkmark\,$ WMT Quality Estimation Shared Tasks
 - 2020 Edition: En-De, En-Zh, Et-En, Ne-En, Ro-En, Ru-En, Si-En
 - 2021 Edition: En-De, En-Zh, Et-En, Ne-En, Ro-En, Ru-En, Si-En, En-Cs, En-Ja, Km-En, Ps-En
- ✓ WMT Automated Post Editing Shared Tasks
 - 2020 Edition: En-De, En-Zh
 - 2021 Edition: En-De, En-Zh

- $\checkmark\,$ WMT Quality Estimation Shared Tasks
 - 2020 Edition: En-De, En-Zh, Et-En, Ne-En, Ro-En, Ru-En, Si-En
 - 2021 Edition: En-De, En-Zh, Et-En, Ne-En, Ro-En, Ru-En, Si-En, En-Cs, En-Ja, Km-En, Ps-En
- ✓ WMT Automated Post Editing Shared Tasks
 - 2020 Edition: En-De, En-Zh
 - 2021 Edition: En-De, En-Zh
- ✓ Eval4NLP Explainable Quality Estimation Task
 - 2021 Edition: Et-En, Ro-En

Already used:

- $\checkmark\,$ WMT Quality Estimation Shared Tasks
 - 2020 Edition: En-De, En-Zh, Et-En, Ne-En, Ro-En, Ru-En, Si-En
 - 2021 Edition: En-De, En-Zh, Et-En, Ne-En, Ro-En, Ru-En, Si-En, En-Cs, En-Ja, Km-En, Ps-En
- ✓ WMT Automated Post Editing Shared Tasks
 - 2020 Edition: En-De, En-Zh
 - 2021 Edition: En-De, En-Zh
- $\checkmark\,$ Eval4NLP Explainable Quality Estimation Task
 - 2021 Edition: Et-En, Ro-En

Maybe also:

- ► Catastrophic error detection
- ► Active learning approaches
- ► Context-aware quality estimation

That's not all

MLQE-PE is intended to be a continuously expanding resource

That's not all

MLQE-PE is intended to be a continuously expanding resource

✓ Contribute resources:

- New language pairs (especially low-resource)
- New domains challenge sets
- Additional annotations references
- √ Use
 - New tasks
 - Compare performance on existing tasks
- ✓ Provide feedback :)

Thank you!

THANK YOU! Questions?

