

Multilingual transfer learning for children automatic speech recognition

Thomas Rolland^{1,2} Alberto Abad^{1,2} Catia Cucchiarini³ Helmer Strik³ ¹INESC-ID, Portugal ²Instituto Superior Técnico, Universidade de Lisboa, Portugal ³Centre for Language and Speech Technology (CLST), Radboud, University Nijmegen, The Netherlands

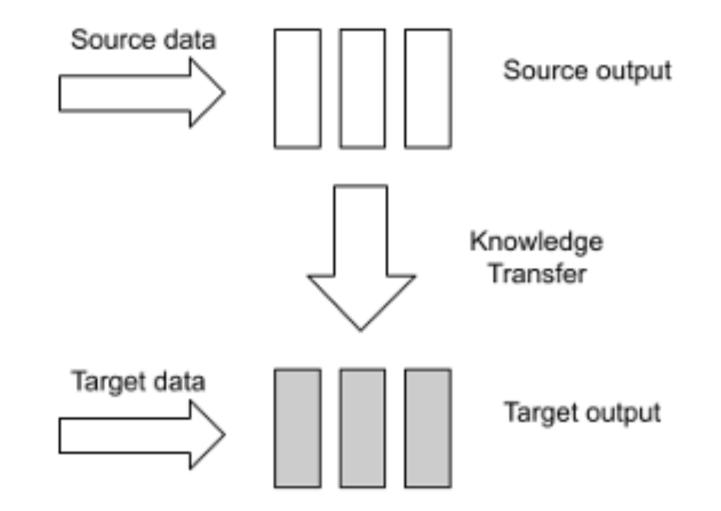
Motivation

- Increased interest for children automatic speech recognition (ASR) for education, computer interaction and speech therapy
- Drop of performance in children ASR compared to adult
 - High variability in children's speech, mainly caused by the physical and developmental changes in the vocal tract, which lead to temporal and spectral variability [1].
 - Limited linguistic knowledge
 - The lack of children data complicates the development of robust ASR for children

Experimental setup

Corpus name	Language	Train	Test	
PFSTAR_SWE	Swedish	6030 utt 2879 u		
		04h00	01h48	
ETLTDE	L2 German	1445 utt	339 utt	
		04h41	01h06	
CMU	English	3637 utt	1543 utt	
		06h26	02h45	
LETSREAD	Portuguese	3590 utt	1039 utt	

Transfer learning



- The model parameters are initialised using knowledge gained from a trained model on a source task
- Successfully applied to children ASR [2,3]

Tonuguese 12h00 02h30 CHOREC Dutch 2490 utt 575 utt 20h12 04h42

Table 1: Children corpora used in our experiment

- Input features: 40-dim fbanks + 40-dim spectral subband centroid + 100-dim i-vector
- <u>Data augmentation</u>: Speech perturbation + Specaugment

• Model:

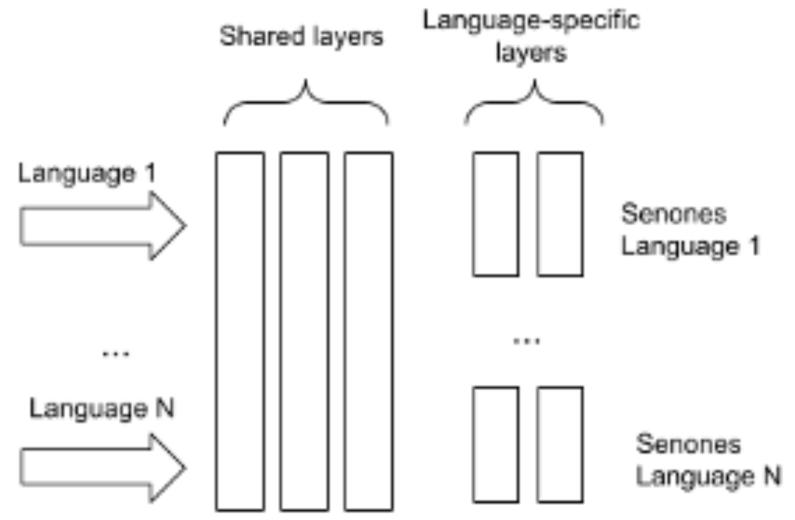
- Shared part : 6 CNN + 7 TDNN-F
- Language-specific part: 2 TDNN + 1 Fully connected
- Use LF-MMI and Cross-entropy for training

Figure 1: Transfer learning approach (white block: Randomly initialised parameters, grey block: Initialisation using pre-trained *parameters*)

Multi-task learning

Results

	PFSTAR_SWE	ETLTDE	CMU	LETSREAD	CHOREC
Language	Swedish	German	English	Portuguese	Dutch
Single language	54.36%	44.69%	21.26%	26.88%	25.15%
MTL	54.95%	42.46%	23.01%	27.45%	25.10%
TL from PFSTAR_SWE	-	42.23%	20.62%	26.47%	24.65%
TL from ETLTDE	53.60%	-	20.90%	26.61%	25.42%
TL from CMU	52.83%	41.54%	-	26.49%	24.58%
TL from LETSREAD	52.50%	41.77%	20.41%	-	24.60%
TL from CHOREC	52.20%	40.28%	19.77%	26.05%	-
TL Average	52.78%	41.46%	20.43%	26.41%	24.81%
TL Best	52.20%	40.28%	19.77%	26.05%	24.58%
MLTL	51.67%	38.04%	19.33%	25.75%	23.78%
MLTL-olo	51.58%	40.05%	19.67%	26.20%	24.57%



- Learn shared representations between related tasks
- Jointly train all tasks in parallel
- Network subdivided in two parts:
 - Shared layers
 - Task-specific layers
- Applied to English and Mandarin children ASR [3,4]

Figure 2: Multi-task learning approach

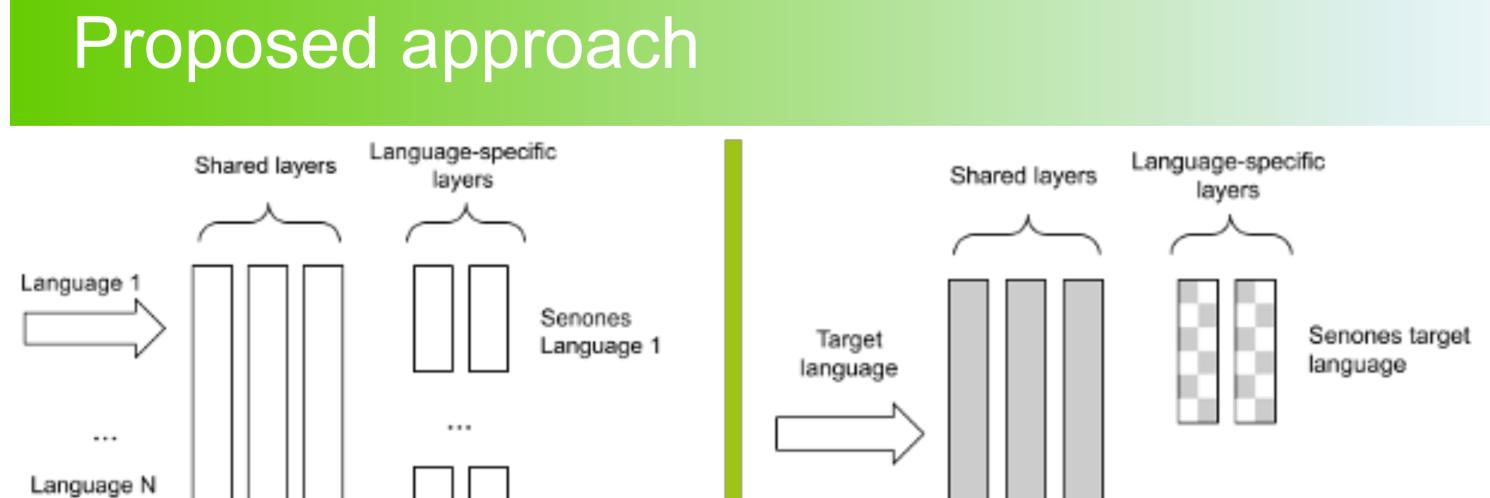


Table 2: WER scores (%) of multi-task learning (MTL), Transfer learning (TL), Multilingual transfer learning (MLTL) and MLTL one-language-out (MLTL-olo)

- MTL fails to improve the baseline performance for almost all languages
- TL outperform corresponding single language and MTL scores
- MLTL shows an average relative improvement in WER of 7.73% compared to the baseline, slightly higher than the average (TL Avg) and the best (TL Best) transfer learning performance, with an average relative improvement of 4.50% and 2.66%, respectively
- MLTL-olo approach outperforms the single language WER score with an average relative improvement of 5.56% and gives similar results as the best TL scores

References

Step 1 – Multi-task training

Step 2 – Language-specific transfer learning

Figure 3: Two-step approach

- Our two-step approach combines multi-task learning and transfer learning:
 - <u>Step 1-</u> Train a multilingual model with a multi-task learning objective
 - <u>Step 2-</u> Adapt this model for a specific children corpus with transfer learning
- Take advantage of the robust pre-trained model trained during the multitask phase
- Pre-trained model has potentially learned cross-linguistic information of children speech and seen more children data than a model trained in a single language

[1] J. Kennedy, S. Lemaignan, C. Montassier, P. Lavalade, B. Irfan, F. Papadopoulos, E. Senft and T. Belpaeme, "Child speech recognition in human-robot interaction: evaluations and recommendations," in Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. ACM Press, 2017.

[2] P. G. Shivakumar and P. Georgiou, "Transfer learning from adult to children for speech recognition: Evaluation, analysis and recommendations," 2018.

[3] R. Tong, L. Wang, and B. Ma, "Transfer learning for children's speech recognition," in 2017 International Conference on Asian Language Processing (IALP), 2017.

[4] W. Linxuan, D. Wenwei, L. Binghuai, and Z. Jinsong, "Multi-task based mispronunciation detection of children speech using multi-lingual information," in APSIPA ASC. IEEE, 2019

This PhD thesis has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska- Curie grant agreement No 766287. This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UIDB/50021/2020.