
Query Obfuscation by Semantic Decomposition
Danushka Bollegala Tomoya Machide Ken-ichi Kawarabayashi

Motivation

• How can we protect the privacy of Web search engine users?

• The Trade-off
- We would like to retrieve relevant search results for our (secret) 
information needs  [relevancy]
– However, we do not want the search engine companies to “know” about 

our (secret) information needs [privacy]

• We propose a method that 
– hides the information intent of a user from the search engine by 

obfuscating the search queries
– At the same time returns relevant results
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Overview of the Proposal

•

3 4

7 8

Word Embeddings to the Rescue!

• We use pretrained static word 
embeddings to find noisy-related 
terms (via cosine similarity in the 
random noise-added embedding 
space) to decompose a user query A.

• Ideally, the related terms 
semantically decompose the the 
user query A such that by 
aggregating the search results for 
each related term we can 
reconstruct the search results for A.

Finding distractor terms

• Sending only the noisy-related terms 
alone to the search engine is still risky 
because the search engine can apply 
some denoising method and still 
predict the original user query A

• Therefore, we also find a set of 
unrelated distractor terms for each 
user query A by random sampling from 
the vocabulary.
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Reconstructing Search Results

• For a given user query A, we find related terms, X1,…, Xn and distractor 
terms, Y1,…, Ym using the above-described methods and retrieve search 
results for all those terms. [Idea: the search engine will find it difficult to 
guess A because of the distractor terms.]

• We will discard search results for the distractor term, and reconstruct the 
search results for A as the union of the search results retrieved for the 
related terms

- We define obfuscity as the (dis)similarity between the original query and the set of
queries sent to the search engine (limited to related terms)

- We define reconstructability as the overlap between the set of documents obtained via
the reconstruction process and the set of documents we would have obtained if we
had sent the original query to the search engine

- We prove the following trade-off between these measures
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Obfuscity vs. Reconstructability

Experimental Results Qualitative Examples
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Relationship between obfuscity
and reconstructability. No noise
added and no distractor terms
used.

are low dimensional (typically 100 � 600 dimensions
are sufficient), consuming less memory and faster when
computing similarity scores. Although we focus on sin-
gle word queries for the ease of discussion, we note
that by using context-sensitive phrase embeddings such
as Elmo (Peters et al., 2018) and BERT (Devlin et al.,
2019) we can obtain vectors representing multi-word
queries, which we defer to future work.
We denote the pretrained word embedding of a term
A by v(A). To perturbate word embeddings, we add
a vector, ✓ 2 Rd, sampled independently for each A
from the d-dimensional Gaussian with a zero mean and
a unit variance, and measure the cosine similarity be-
tween v(A) + ✓ and each of the words Xi 2 V in a
predefined and fixed vocabulary V , using their word
embeddings v(Xi). We then select the top most similar
words {Xi}ni=1 as the noisy related terms of A.
Let us denote the set of documents retrieved using a
query A by D(A). If we use a sufficiently large number
of related terms Xi to A, we will be able to retrieve
D(A) exactly using

D0(A) =
n[

i=1

D(Xi). (1)

However, in practice we are limited to using a trun-
cated list of n related terms because of computational
efficiency and to limit the number of queries sent to
the search engine. Therefore, in practice D0(A) will
not be exactly equal to D(A). Nonetheless, we assume
the equality to hold in (1), and later in the theoretical
proofs given in the supplementary material discuss the
approximation error. To model the effect of ranking,
we consider only the top-⇣ ranked documents as D(Xi)
and set ⇣ = 100 in our experiments.

2.2. Obfuscation via Distractor Terms
Searching using noisy related terms Xi alone of a user
query A, does not guarantee the obfuscity. The probabil-
ity of predicting the original user query increases with
the number of related terms used. Therefore, we require
further mechanisms to ensure that it will be difficult for
the search engine to predict A from the queries it has
seen. For this purpose, we select a set of unrelated terms
{Yj}nj=1, which we refer to as the distractor terms.
Several techniques can be used to find the distractor
terms for a given query A. For example, we can ran-
domly select terms from the vocabulary V as the distrac-
tor terms. However, such randomly selected distractor
terms are unlikely to be coherent, and could be easily
singled-out from the related terms by the search engine.
If we know the semantic category of A (e.g. A is a per-
son or a location etc.), then we can limit the distractor
terms to the same semantic category as A. This will
guarantee that both related terms as well as distractor
terms are semantically related in the sense that they
both represent the same category. Therefore, it will be
difficult for the search engine to discriminate between
related terms and distractor terms. Information about the

Figure 2: Selecting distractor terms for a given query
A. We first compute the noise (✓) added vector A0 for
A, and then search for terms Yj that are located inside a
cone that forms an angle ! with A0. This would ensure
that distractor terms are sufficiently similar to the noise
component, therefore difficult to distinguish from A.

semantic categories of terms can be obtained through
different ways such as Wikipedia category pages, tax-
onomies such as the WordNet (Miller, 1995) or by
named entity recognition (NER) tools. Moreover, we
consider distractor terms Yj that have similar average
frequency as the original query A and the noisy related
terms Xi so that it will be difficult to differentiate be-
tween distractor terms and noisy related terms based on
frequency information.

We propose a method to find distractor terms Yj for
each query A using pre-trained word embeddings as
illustrated in Figure 2. Let us consider a set of candi-
date terms C from which we must select the distractor
terms. For example, C could be a randomly selected
subset from the vocabulary of the corpus used to train
word embeddings. First, we select a random hyperplane
(represented by the normal vector h 2 Rd to the hyper-
plane) in the embedding space that passes through the
point corresponding to A. Next, we split C into two mu-
tually exclusive sets C+ = {x : x 2 C,x>h � 0} and
C� = {x : x 2 C,x>h < 0} depending on which side
of the hyperplane the word is located. Let us define Cmax

and Cmin to be respectively the larger and smaller of the
two sets C+ and C� (i.e. Cmax = argmaxS2{C+,C�} |C|
and Cmin = argminS2{C+,C�} |C|) Next, we remove
the top 10% of the similar words in Cmax to the origi-
nal query A. We then use this reduced Cmax as C (i.e.
C  Cmax) and repeat this process until we are left with
the desired number of distractor terms in C. Intuitively,
we are partitioning the candidate set into two groups in
each iteration considering some attribute (dimension) of
the word embedding of the query (possibly represent-
ing some latent meaning of the query), and removing
similar terms in that subspace.

2.3. Reconstructing Search Results
Once we have identified a set of noisy related terms,
{Xi}ni=1, and a set of distractor terms, {Yj}nj=1, we
issue those terms as queries to the search engine and
retrieve the relevant search results for each individual
term. We issue related terms and distractor terms in a
random sequence, and ignore the results returned by the
search engine for the distractor terms. Finally, we can
reconstruct the search results for A using (1).

3. Obfuscity vs. Reconstructability
Our proposed query decomposition method strikes a
fine balance between two factors (a) the difficulty for
the search engine to guess the original user query
A, from the set of terms that it receives Q(A) =
{X1, X2, . . . , Xn, Y1, Y2, . . . , Ym}, and (b) the diffi-
culty to reconstruct the search results, D(A), for the
original user query, A, using the search results for the
noisy related terms following (1). We refer to (a) as
the obfuscity, and (b) as the reconstructability of the
proposed query decomposition process.

3.1. Obfuscity
We define obfuscity, ↵, as the ease to guess the user
query A, from the terms issued to the search engine and
compute it as follows:

↵ = 1� 1

|Q(A)|
X

q2Q(A)

sim(v(A), v(q)) (2)

Specifically, we measure the average cosine similarity
between the word embedding, v(A), for the original
user query A, and the word embeddings v(q) for each
of q 2 Q(A) search terms. If the similarity is higher,
then it becomes easier for the search engine to guess
A from the search terms. The difference between this
average similarity and 1 (i.e. the maximum value for
the average similarity) is considered as a measure of
obfuscity we can guarantee through the proposed query
decomposition process. Even if we are not exactly send-
ing A to the search engine as a keyword, the search
engine will be able to figure out A from Q(A). By us-
ing word embeddings to measure the similarity between
the original query A and the keywords Q(A) sent to the
search engine, we are able to consider not only exact
matches but semantically similar keywords, which can
be seen as a soft match between words. The definition
of obfuscity given by (2) is based on this intuition.

3.2. Reconstructability
We reconstruct the search results for A using the search
results for the queries {Xi}ni=1 following (1). We define
reconstructability, ⇢ as a measure of the accuracy of this
reconstruction process and is defined as follows:

⇢ =
|D(A) \D0(A)|

|D(A)| (3)

A document retrieved and ranked at top-⇣ by only a
single noisy related term might not be relevant to the

original user query A. A more robust reconstruction
procedure would be to consider a document as relevant
if it has been retrieved by at least l different noisy related
terms. If a user query A can be represented by a set of
documents where, each document is retrieved by at least
l < n different noisy related terms, then we say A to
be l-reconstructable. In fact, the reconstruction process
defined in (1) corresponds to the special case where
l = 1. Increasing the value of l would decrease the
number of relevant documents retrieved for the original
user query A, but it is likely to increase the relevance of
the retrieval process. In the supplementary material, we
prove that the trade-off relationship (18) holds between
⇢ and ↵.

Theorem 1. Given a query A, represented by d-
dimensional embedding, v(A), let us obfuscate it with n
distractor terms and use all (i.e. n = l) distractor terms
to reconstruct the search results for A. The obfuscity ↵
and the reconstructability ⇢ is in the inverse (trade-off)
relationship given by (18), where c and Z are query
independent constants.

log ⇢ =
cl

2d
(c+ 2(1� ↵) ||v(A)||2)� logZ (4)

3.3. Extension to Multi-word Expressions
The anonymisation method and its theoretical analysis
described in the paper so far can be easily generalised
to handle multi-word queries. Specifically, in the case
of multi-word queries we must embed not only uni-
grams but phrasal n-grams. Directly modelling n-gram
co-occurrences is challenging for higher-order n-grams
because of data sparseness issues (Turney and Pantel,
2010). Compositional approaches (Cordeiro et al., 2016;
Hashimoto and Tsuruoka, 2016; Poliak et al., 2017; Yu
and Dredze, 2015) have been proposed to overcome this
problem, where unigram, subword, or character level
embeddings are iteratively combined to create repre-
sentations for longer phrasal queries. These methods
can compute length-invariant vector representations for
n-grams, which can then be used in the same manner as
described in Section 2.1 for finding noisy-related terms
and in Section 2.3 for finding distractor terms.

3.4. Effect of Ranking
If the number of documents containing q, |D(q)|, is less
than ⇣ for all q 2 Q(A), we will be able to retrieve all
documents containing the related and distractor terms.
However, when this condition does not hold for one
or more terms in Q(A), the reconstruction process is
not guaranteed to perfectly reconstruct D(A), depend-
ing on the accuracy of the ranking method used in the
search engine. Note that due to the relatedness between
the terms {Xi}ni=1, even though a particular relevant
document d 2 D(A) is not retrieved by a term Xi due
to the truncation by ranking, it could still be retrieved
by a different Xj (j 6= i) term. Moreover, in prac-
tice, the number of relevant documents for a query is
significantly smaller than ⇣ and modern search engines
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Hit rate for the k-mean
clustering attacks for increasing
number of clusters (k) with 20
distractor terms.

Figure 3: Relationship between obfuscity and reconstructability under different levels of added noise and no distrac-
tor terms (left: no-noise, middle: medium-level of noise, and right: high-level of noise). Base reconstructability
scores for no noise and no distractor terms are super imposed in black boxes.

Figure 4: Hit rates for the k-means clustering attacks for increasing number of clusters (k) and distractor terms.
(left: no distractors, middle: 20 distractors, and right: 40 distractors). In each figure, we show results for three levels
of added noise.

noise added candidates is less prominent. This result
suggests that we could increase the number of distractor
terms while keeping the level of noise to a minimum.
We show the terms discovered by clustering attacks for
two example queries, Hitler (Table 1) and mass mur-
der (Table 2) using a relatively small (< 10) distractor
terms. We see terms that are related to the original
queries can be accurately identified from the word em-
beddings. Moreover, by adding a high-level of noise to
the embeddings, we can generate distractor terms that
are sufficiently further from the original queries. Conse-
quently, we see that both obfuscity and reconstructabil-
ity are relatively high for these examples. Interestingly,
the clustering attack is unable to discover the original
queries, irrespective of the number of clusters produced.

5. Trade-off between Reconstructability
and the Hit Rate in Clustering Attacks

If the terms sent to the search engine are related to the
original query, we will be able to accurately reconstruct
the search results. However, this increases the risk of
an adversary correctly guessing the query. Hit rate was
defined as the fraction of the user queries correctly pre-
dicted by the clustering attack and is a measure of the
robustness of the proposed method. Therefore, a nat-
ural question is what is the relationship between the
reconstructability and the hit rate.

Query Hitler

noise high-level
related terms nazi, führer, gun, wehrmacht,

guns, nra, pistol, bullets
obfuscity 0.867
reconstructability 0.831

Clustering Attack Revealed Query
k=1 motagomery
k=2 albany, george
k=3 smith, albany
k=4 smith, fresno
k=5 rifle, albany

Table 1: Terms revealed by the clustering attacks for the
query Hitler. Clustering attack with different number of
clusters (k) does not reveal the original query.

To study this relationship, we randomly select 109 user-
queries and add Gaussian noise with zero-mean and
standard deviations 0 (no noise), 0.6, 1.0, 1.4 and 1.8. In
each case, we vary the number of distractor terms 0-120
and apply k-means clustering attacks with k = 1, 2, 3, 4
and 5.4 To conduct a conservative evaluation, we con-
sider the terms in the vocabulary closest to the respective
centroids in all clusters and not only the most coherent

4In total, for a fixed k-value and the number of distractor
terms, we have 545 clustering attacks.

Figure 5: Relationship between obfuscity and reconstructability under different levels of added noise and with 20 dis-
tractor terms (left: no-noise, middle: medium-level of noise, and right: high-level of noise). Base reconstructability
scores for no noise and no distractor terms are super imposed in black boxes.

Figure 6: Hit-rate shown against reconstructability for k-means attacks with 0 (left), 60 (middle) and 120 (right)
distractor terms.

Query mass murder

noise high-level
related terms terrorism, killed, wrath, full-

grown
obfuscity 0.789
reconstructability 0.747

Clustering Attack Revealed Query
k=1 richmond
k=2 fremont, death
k=4 pasadena, words
k=4 pasadena, words
k=5 pasadena, anderson

Table 2: Terms revealed by the clustering attacks for
the query mass murder. We see that the query nor its
two tokens are revealed by the clustering attacks with
different k values.

one as in Section 4.2. If the original query matches any
of those k terms, we consider it to be a hit (e.g. to be
revealing the original query). We randomly sample data
points from even intervals of reconstructability values
and plot in Figure 6.
We see a positive relationship between the recon-
structability and the hit rate in all figures. This indicates
a trade-off between the reconstructability and the hit
rate, which shows that if we try to increase the recon-
structability by selecting more relevant keywords to the

original user-query, then it simultaneously increases the
risk of the search engine discovering the query via a clus-
tering attack. We see that when we increase the number
of distractor terms the hit rate drops for the same value
of reconstructability. This result shows that in order to
overcome the trade off between the reconstructability
and the hit rate we can simply increase the number of
distractor terms, thereby making the query obfuscation
method more robust against clustering attacks. More-
over, the drop due to distractor terms is more prominent
for the k = 1 attacks when we have distractor terms
compared to that when we do not have distractor terms.
This is because both related and distractor terms will be
contained in this single cluster from which it is difficult
to guess the original user-query.

Overall, the hit rate drops in the order k = 5, k = 3
and k = 2 when we increase the number of distractor
terms. This result suggests that if one wants to increase
the hit rate, then an effective strategy is to increase the
number of clusters because we consider it to be a hit if
the user-query is found via any of the clusters. However,
in practice, we will need to further select one term from
all the clusters. Nevertheless, we can consider the hit
rate obtained in this manner to be a more conservative
estimate, whereas in reality it will be less and therefore
be more robust against attacks. We conduct a human
evaluation of the distractor terms in Appendix B, which
interestingly shows that the the distractor terms found

- A human evaluation shows that even human annotators find it difficult to predict 
the original user queries using the terms found by the proposed method. 

-The proposed method can be extended other types of data such as document or 
images, using embeddings to implement anonymized multimodal retrieval 
methods.


