

Towards the Detection of a Semantic Gap in the Chain of Commonsense Knowledge Triples Yoshihiko Hayashi (Waseda University, Japan)

Mind the semantic gap in commonsense KG

Contributions

- We created a pilot dataset in which knowledge triple chains sampled from *ConceptNet* were annotated whether each contains a semantic gap.
- We devised a few baseline methods for detecting the semantic gaps and compared them in small-scale preliminary experiments.
- We achieved several insights from preliminary experiments: the potential efficacy of sense embeddings and contextualized word embeddings.

Notations and definitions

- A knowledge triple chain c is formed by two adjacent knowledge triples, t, and t₂.
 - A knowledge triple chain is a primary component of an arbitrary length knowledge path.
- A semantic gap exists in c if the intended meaning of the hinge word w in t₁ may be different from that in t₂.

ConceptNet An open, multilingual knowledge g

https://conceptnet.io/

"ConceptNet is a multilingual knowledge base, representing words and phrases that people use and the common-sense relationships between them. The knowledge in ConceptNet is collected from a variety of resources, including crowd-sourced resources, games with a purpose, and expert-created resources".

Pilot dataset

- Selection of the hinge words: from "List of English homographs", as well as well-known polysemous words (e.g., river, bank, plane, etc.)
- Sampling of chains: random sampling, but excluded some concept relations (e.g., RelatedTo, HasContext, etc.)
- · Labeling of semantic gaps:
- initially annotated by an English native speaker; revised by the author
- checked invalid triples by POS-level checking rules
- allowed mutually associated derivative meanings (e.g., red as a noun or as an adjective) and systematic polysemy (e.g., school)

Item	Count
total # of chains	3,000
# of chains without-gap	1,313 relatively well-balanced
# of chains with-gap	1,425
# of chains incl. invalid triples	262
# of unique triples	4,316
# of triples flagged invalid	196 noisy! (~5% erroneous data)
# of unique hinge words	255
 average degree of polysemy 	10.5 WordNet 3.0: too fine-grained?

Concluding remarks

- ARES-based second-order similarities would be effective (when combined with other features)
- Simple BERT-based classifier outperformed other baselines (the aggregation method could/should be improved)
- Weakly or self-supervised method is required (to address the data issue)

Selected references

- [ConceptNet & NumberBatch] Speer et al., (2017). ConceptNet 5.5: An Open Multilingual Graph of General Knowledge, AAAI 2017.
- [ARES] Scarlini et al., (2020). With More Contexts Comes Better Performance: Contextualized Sense Embeddings for All-Round Word Sense Disambiguation, *EMNLP* 2020.

Baseline detection methods

- Pseudo sentences are generated by applying hand-coded templates
- Representations for plane, plane, and plane are obtained by pooling BERT vectors

Preliminary experiments and the Results Semantic gap detection is not a trivial task!

BERT	ARES	NumBat	P	R	F1
✓			0.68	0.65	0.65
	✓		0.64	0.61	0.60
		✓	0.66	0.65	0.65
✓	✓		0.69	0.65	0.66
	✓	✓	0.69	0.68	0.68
./	./	./	0.70	0.67	0.67

Table 2: Experimental results with the pre-trained BERT. P and R stand for precision and recall, respec-

- BERT > NumberBatch > ARES
- ARES however plays a role when combined with NumberBatch/BERT

BERT	ARES	NumBat	P	R	F1
√			0.67	0.66	0.66
	✓		0.65	0.65	0.64
✓	✓		0.67	0.66	0.66
	✓	✓	0.68	0.66	0.66
\checkmark	\checkmark	✓	0.67	0.67	0.67

Table 3: Experimental results with the fine-tuned BERT. The NumberBatch baseline is excluded from this table, as it does not use BERT-originated vectors.

 fine-tuning is not effective (in the comparison with ARES embeddings)

Alternative baseline: Simple BERT-based classifier

Level	P	R	F1
Sentence pair-wise	0.73	0.74	0.73
Chain-level	0.70	0.70	0.70

Table 5: Experimental results with fine-tuned BERT based classifier.

Logistic Regression, SVM, Random Forest, MLP

c₁: classify(plane, plane)c₂: classify(plane, plane)

https://bit.ly/3vt7Re

