

JaMIE: A Pipeline Japanese Medical Information Extraction System with Novel Relation Annotation

Fei Cheng¹, Shuntaro Yada², Ribeka Tanaka³, Eiji Aramaki², Sadao Kurohashi¹

1. Kyoto University, 2. Nara Institute of Science and Technology, 3. Ochanomizu University

1. Motivation

Less semantic-aware tasks such as relation extraction has been developed in Japanese medical domain natural language processing. In this work, we present two contributions:

- novel annotation of medical and temporal relations in Japanese.
- an open-access toolkit for accurately recognizing entities, modalities and relations from medical texts.

2. Japanese medical relation annotation

We conduct **novel relation annotation** over an existing Japanese medical corpus (Yada+, 2020) with following entity and modality information annotated:

Disease<D>, Anatomical<A>, Feature<F>, Change<C>, Time <TIMEX3>, Test<T-test/key/val>, Medicine<M-key/val>, Remedy <R>, Clinical Context<CC>.

On the top of the entity and modality annotation, we designed medical relations and temporal relations between two entities.

3. Japanese temporal relation annotation

Temporal Relation

• On

"In <TIMEX3>Sep. 2003</TIMEX3>, diagnosed as <D>podagra</D>"

• Before

"After <CC>visiting the cardiovascular department</CC>, she was hospitalized <TIMEX3>from April 11th</TIMEX3>."

• After

"since <TIMEX3>11 Aug</TIMEX3>, PSL was <C>normalized</C>."

• Start

"<M-key>Equa</M-key> started at <TIMEX3>23 April</TIMEX3>."

• Finish

"On <TIMEX3>17 Nov</TIMEX3>, quitting <R>HOT</R>"

Medical Relation

- Change
 - "<A>intrahepatic bile ducts are <C>dilated</C>"
- Compare

"<C>not changed</C> since <TIMEX3> Sep. 2003</TIMEX3>"

• Feature

"<F>pathologically significant</F> <D>lymph node enlargement</D>"

Region

"There are no <D>abnormalities</D> in the <A>liver."

Value

"<T-key> Smoking</T-key>: <T-val>20 cigarettes</T-val>"

4. Pipeline System of JaMIE

JaMIE: A Pipeline Japanese Medical Information Extraction System

5. The statistics of the relation annotation

In this work, we target two types of reports for annotating: **RIRLC** denotes 1,000 Radiography Interpretation Reports of Lung Cancer. **MRIPF** denotes 156 Medical Reports of Idiopathic Pulmonary Fibrosis.

Medical	# RIRLC	# MRIPF	Temporal	# RI	RLC	# MRIPF
Change	689	465	On		696	1,583
Compare	615	229	Before		1	14
Feature	5,077	294	After		3	22
Region	6,794	631	Start		5	219
Value	2	1,932	Finish		2	43
	<u> </u>	6. Main	results			
Our BERT-b especially in	ased mod the RIRLC	6. Main el achieves data.	results accurate	analyzi	ng perf	ormance
Our BERT-b especially in Report	ased mod the RIRLC type	6. Main el achieves data. Encod	results accurate a	analyzi /IER	ng perfe	ormance RE
Our BERT-b especially in Report RIRLC	ased mod the RIRLC type	6. Main el achieves data. Encod LSTN	results accurate a ler N	analyzi /IER 93.63	ng perfe MC 93.01	ormance RE 66.83
Our BERT-b especially in Report RIRLC	ased mod the RIRLC type	6. Main el achieves data. Encod LSTN BER	resultsaccurateler\lambda<	analyzi /IER 93.63 95.65	ng perfe MC 93.01 94.10	ormance RE 66.83 86.53
<section-header><section-header><section-header></section-header></section-header></section-header>	ased mod the RIRLC	6. Main el achieves data. Encod LSTN BER BER	resultsaccurateacc	analyzi AER 93.63 4 95.30 4	ng perfe NC 93.01 94.10	ormance RE 66.83 86.53
Our BERT-b especially in Report RIRLC	ased mod the RIRLC	6. Main el achieves data. Encod LSTN Yada+ 2 LSTN	resultsaccurate aler\\\ <td< td=""><td>analyzi AER 4 93.63 4 95.30 4 95.30 4</td><td>ng perfe NC 93.01 94.10 - 75.26</td><td>Ormance RE 66.83 86.53 60.42</td></td<>	analyzi AER 4 93.63 4 95.30 4 95.30 4	ng perfe NC 93.01 94.10 - 75.26	Ormance RE 66.83 86.5 3 60.42

7. Additional comparison with comparable training data						
Report type	Training data	RE				
MRIPF	100%	71.04				
RIRLC	Comparable size	82.33				

8. User Interface

JaMIE provides an easy-to-use Command-Line Interface (CLI), which is similar to PyTorch Transformers. We demonstrate how to train/test a relation model with following scripts.

Training \$ python clinical_pipeline_rel.py \ \$ --pretrained_model \$PRETRAINED_JAPANESE_BERT \ \$ --saved_model \$FINETUNED_MODEL \ \$ --train_file \$TRAIN_FILE \ \$ --dev_file \$DEV_FILE \ \$ --dev_file \$DEV_FILE \ \$ --batch_size 16 \ \$ --do_train # Testing \$ python clinical_pipeline_rel.py \ \$ --saved_model \$FINETUNED_MODEL \ \$ --test_file \$TEST_FILE \ \$ --test_out \$TEST_OUTPUT \