FGraDA: A Dataset and Benchmark for Fine-Grained Domain Adaptation in Machine Translation

Wenhao Zhu^{1,2}, Shujian Huang^{1,2}, Tong Pu^{1,2}, Pingxuan Huang³, Xu Zhang⁴, Jian Yu⁴, Wei Chen⁴, Yanfeng Wang⁴, Jiajun Chen^{1,2}

¹National Key Laboratory for Novel Software Technology, Nanjing University ²Collaborative Innovation Center of Novel Software Technology and Industrialization ³University of Michigan, USA ⁴Sogou Inc. Beijing, China

{zhuwh, putong}@smail.nju.edu.cn, {huangsj, chenjj}@nju.edu.cn, pxuanh@umich.edu {zhangxu216526, yujian216093, chenweibbj8871, wangyanfeng}@sogou-inc.com

Background & Motivation

Domain Adaptation

- Domain Adaptation aim at adapting a general domain NMT model to a target domain.
- Current research of domain adaptation usually considers very broad target domains.
- The words or sentences in different sub-domains have different language phenomena.

Domain	translations around the word "卡"
Autonomous Vehicles	the wheel is <i>stuck</i> and you can't
AI Education	some of these math <i>card</i> games
Real-Time Networks	how to fix video stuttering
Smart Phone	find your <i>SIM card</i> slot and

Table 1: An example where the Chinese word " \pm " have different translations in different sub-domains of IT.

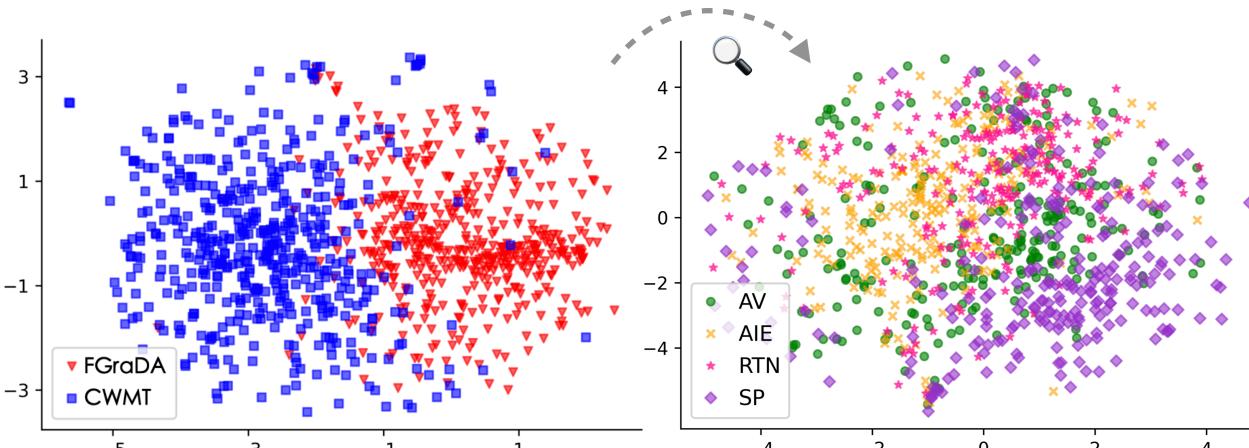


Figure 1: Visualization of sentences from general domain and IT fine-grained domains.

Fine-grained Domain Adaptation

- There are limited time and budget to collect data (especially parallel data).
- Speicific research may be needed to model fine-grained domains with other heterogeneous resources that are more available.

Our Contribution

- ► We build a fine-grained domain adaptation dataset for machine translation, FGraDA, to motivate wider investigation in such scenario.
- We compare different existing domain adaptation approaches and benchmark the FGraDA dataset.
- We present in-depth analyses showing that there are still challenging problems to further improve the performance with heterogeneous resources.

FGraDA Dataset

Dataset Overview

- Adaptation resource: bilingual dictionary and wiki knowledge base
- Evalutation resource: development and test set

	•			
Domain	Dictionary (items)	Wiki knowledge base (wiki pages)	Development set (sent. pairs)	Test set (sent. pairs)
Autonomous Vehicles (AV)	275	116,381	200	605
AI Education (AIE)	270	195,339	200	1,309
Real-Time Networks (RTN)	360	111,101	200	1,303
Smart Phone (SP)	284	90,337	200	750

Table 2: Main statistics of our dataset.

Bilingual Dictionary

- ► It is easier and cheaper to obtain.
- ▶ It contains domain-specific word-level correspondences between the two langauges.
- We manually build a small set of bilingual dictionaries.

Autonomous Vehicles	AI Education	Real-Time Networks	Smart Phone
自动驾驶 - self-driving	知识检索 - knowledge retrieval	直播 - live streaming	蓝牙 - bluetooth
超声波雷达 - ultrasonic radar	虚拟教学 - virtual teaching	丢包 - packet loss	高动态范围成像 - HDR
车道协同 - lane coordination	脑电图-EEG	网络地址转换 - NAT	焦外 - bokeh
激光雷达 - LiDAR	聊天机器人 - chatbot	传输层 - transport layer	帧率 - fps
行人检测 - pedestrian detection	机器学习 - machine learning	延迟 - latency	蜂窝网络 - cellular network

Table 3: Examples of the annotated bilingual dictionary.

Wiki knowledge base

- ► It is publicly available resource.
- ▶ It contain rich monolingual resources and have additional structural knowledge.
- We collect domain related English wikipages with the help of link relations.

seed page one-hop-link pages Title: display device Title: HDR Text: A display device one-hop-link pages Domain seed pages Text: High dynamic range (HDR) is an output device for is a dynamic range higher than presentation of ... Autonomous Vehicle 19,277 / 490 97,104 / 1,522 usual. The term is often used in 159,724 / 1,536 AI Education 35,615 / 636 Title: 3D rendering discussing display devices, 17,930 / 565 93,171 / 1,386 Real-Time Networks photography, 3D rendering, and Text: 3D rendering is 15,944 / 452 74,393 / 1,736 **Smart Phone** sound recording including digital the 3D computer imaging and digital audio ... graphics process of ...

Figure 2: Illustration of the wiki knowledge base provided in our dataset.

Table 4: Detailed statistics of our wiki knowledge base.

Development and test set

We collect and label parallel data as development and test set.

Benchmarks

Baselines

- Base: directly using a general domain Transformer
- Dict_{GBS}: Performing constrained decoding for Base with in-domain dictionary
- ► Dict_{FT}: fine-tuning Base on the in-domain dictionary
- Wiki_{BT}: using sentences of wiki seed pages for back-translation and fine-tune Base on it
- ► WikibT+DictGBS: Applying constrained decoding on WikibT

Bechmark Results

- Dict_{GBS} and Wiki_{BT} improve the baseline to some extent.
- Dict_{FT} barely brings any improvement.
- With both resources, WikiBT+DictFT achieves the best performance. However, the translation performance of it on a large portion of test sentences is not satisfactory, e.g., under 20.

Model	AV	AIE	RTN	SP	Avg.
Base	34.0	31.1	16.6	22.9	26.2
$\mathbf{Dict}_{\mathbf{GBS}}$	34.5	31.1	17.0	23.0	26.4
$\mathbf{Dict}_{\mathbf{FT}}$	34.0	31.1	16.7	22.9	26.2
Wiki _{BT}	34.8	31.8	16.8	23.4	26.7
Wiki _{BT} +Dict _{GBS}	35.1	31.9	17.2	23.6	27.0

Table 5: Translation results (BLEU scores) on four fine-grained domains.

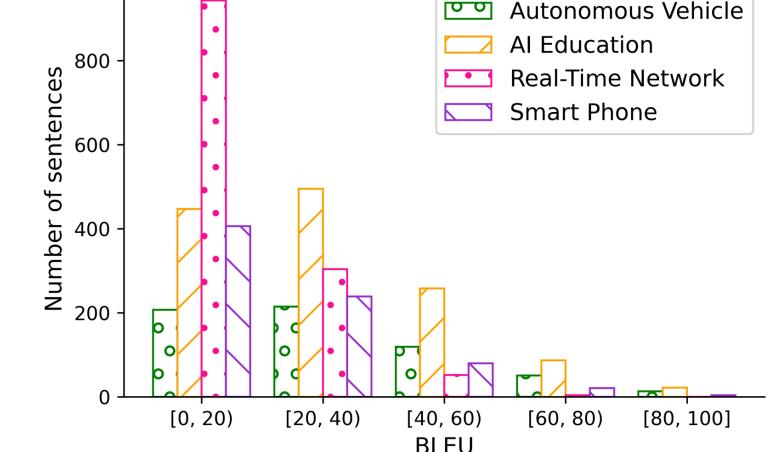


Figure 3: Distribution of sentence BLEU scores on four fine-grained domains.

Remaining Challenges

Mining from the Dictionary

- ► The domain dictionary contains accurate translation knowledge about the domain specific words
- ► However, a large portion of dictionary items are still mis-translated.
- Simply forcing the models to generate infrequent in-domain words is not sufficient.

Mining from Wiki knowledge Base

- ► Wiki knowledge base contain rich structural knowledge that may help the NMT model to "understand" domain specific words.
- The first sentence in the page is usually the definition for title word.
- Words that have link pages are closely related to the current title word.

Mining from the Domain Hierarchy

Leveraing resources from other related sub-domains.

AV	AIE	RTN	SP
63.04	57.81	65.86	59.42
65.84	59.69	76.94	61.85
63.93	59.38	67.30	58.97
65.84	64.22	87.84	63.07
	63.04 65.84 63.93	63.04 57.81 65.84 59.69 63.93 59.38	63.04 57.81 65.86 65.84 59.69 76.94 63.93 59.38 67.30

Table 6: The translation accuracy (%) of items in the dictionary.

Test Adapt	AV	AIE	RTN	SP
AV	35.1	31.0	16.7	23.1
AIE	35.0	31.9	16.9	23.3
RTN	35.2	31.9	17.2	23.4
SP	35.2	31.9	16.9	23.6

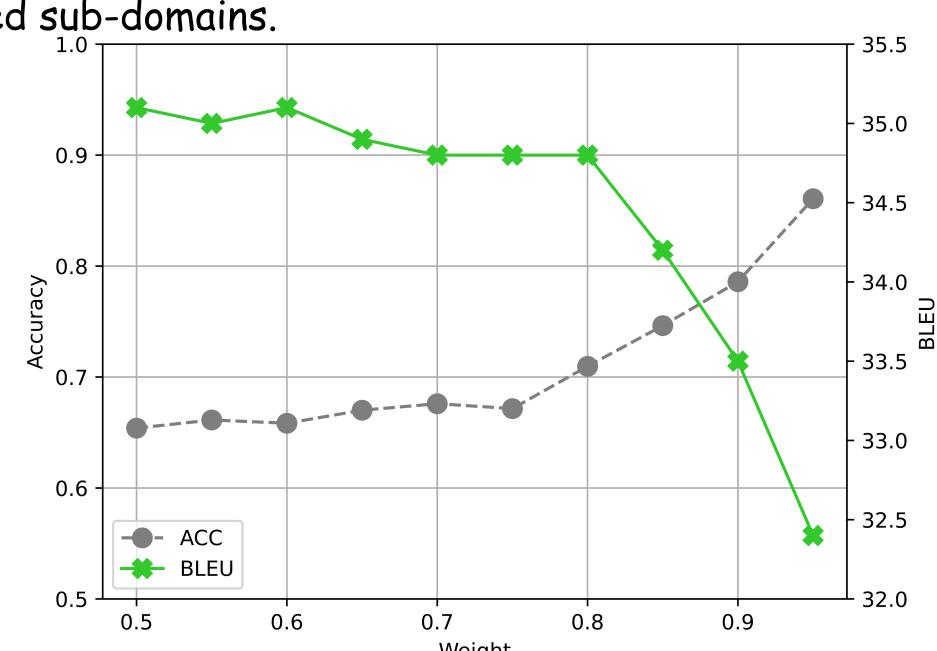


Figure 4: Dictionary words translation accuracy and BLEU

Table 7: The performance on all four test sets. w.r.t. different weights in GBS on AV test set.