Dynamic Human Evaluation for Relative Model Comparison

Thórhildur Thorleiksdóttir¹, Cedric Renggli¹, Nora Hollenstein², Ce Zhang¹

¹ETH Zürich; ²University of Copenhagen

Evaluation of NLG Models

- · Human evaluation is regarded as the primary metric
- Current limitations
 - o Expensive and time consuming
 - o Lack of consensus
 - o Statistically underpowered

Model Comparison

- Streamline human evaluation for text generation
- Conclude better model with high probability

- Two-alternative forced choice evaluation
- Control the number of collected judgements using Concentration Inequalities
- Compare different labelling strategies and their required labelling effort

Results

- Single random worker per request requires the least labelling effort when deciding the better model with 0.999 probability
- Assigning different workers per request enables trivial parallelization

- The human evaluation study indicated that assigning one random worker per request requires the least labelling effort in both model comparisons with a high probability (0.9999)
- Simulated and real human evaluation show similar trends in terms of labelling efforts for proposed decision method
- Simulating human evaluation can provide valuable insight without any cost

Agent-Based Human Evaluation

Simulate Two-Choice Human Evaluation

- Assume two generative models: A and B
- $\bullet~$ Varying workers evaluate provided request pairs $\rightarrow (a_{i},\,b_{j})$
- Model performance: Proportion of selected outputs w.r.t. the number of requests evaluated

Formulation of the Evaluation Task

ullet Request difficulty $\ d \sim Nig(\mu,\,\sigma^2ig)$

d = 1, Easy to distinguish a as the better item compared to b

d = 0, Cannot distinguish a being better than b (and vice versa)

d = -1, Easy to distinguish **b** as the better item compared to a

ullet Worker capacity $\,c \sim \mathrm{Unif}(a,\,b)\,$

c = 0, Incapable annotator, not fluent in English

c = 1, Highly capable annotator, fluent in English

Compute the product to simulate the item selection

 $p = c \cdot d$

ullet Transform to probability $P(a)=rac{p+1}{2}$

$$\frac{+1}{2}$$
 $P(b) = 1 - P(a)$

Perform a single Bernoulli Trial

$$P(1) = P(a) \qquad P(0) = P(b)$$

Decision Boundaries

• One-sided version of Hoeffding inequality $\delta \leq e^{-2nt^2}$ δ : probability of the observed proportion not being within the error bounds

t: the width of the error bound **n**: number of requests

$$t = \sqrt{\frac{-\ln\left(\delta\right)}{2n}}$$

Labelling Strategies

- Fixed Worker
- One Worker
- N Workers (Majority Vote)
- Max Three Workers

Experiment setup

- Simulation experiment consists of 1000 iteration for all labelling strategies where identical requests are evaluated with varying worker capabilities
- Sample 100 capabilities from Unif(0.8, 1.0)
- Run simulation experiments with three different difficulty levels

Case Study: Evaluating Controlled Text Generation

- Systematic control for semantic and syntactic aspects of generated text
- Train several versions of attribute-control text generation models
- Two model comparisons:
 V1 vs CGA and V2 vs CGA

ate control toxt goneration medic		
Model	WD	Dataset Size
L_{ADV} + standard WD (V1)	0.3	~ 1300 sent.
L_{ADV} + standard WD (V2)	0.7	~ 600.000 sent.
L_{CGA} + cyclical WD (CGA)	C	$\sim 600.000 \text{ sent.}$

Experiment setup

- 500 request pair for each model comparison
- Evaluation Criteria: Naturalness

Could a native speaker have produced the given text

- 10 workers evaluate each request pair on Amazon Mechanical Turk
- Sample collected judgments over 100 iterations

