Personalized filled-pause generation with group-wise prediction models
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1. Overview

Personalized disfluent text generation Filled pauses (FPs): one kind of disfluency
* Application: avatars speaking instead of humans * Roles: help speech generation [1] and communication [2].
* Personalization: reproduce speakers’ individuality. * Diversity:
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* Synthesize only fluent speech. * Features: position and word Q FP prediction
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* Personalized disfluent text generation — this work This work
* We focus on one kind of disfluency, filled pauses (FPs). * Personalized FP generation by grouping speakers
* Ex. I'll (uh) explain FP prediction. * Improvement of prediction performance
2. Method
Basic architecture of FP prediction model [5] Personalized FP prediction model.
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FP prediction

* Advantage: not need to train a prediction model for each speaker.
* Training: train a model of each group in multi-speaker spontaneous speech corpus.
* Inference: use the model of the group closest to the target speaker’'s FP usage.
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Weighted cross entropy loss [6] * Train a model for each speaker in Japanese lecture spontaneous speech corpus.

e Data imbalance: 'll explain (uh) FP prediction.

* |tis harder to predict less frequent words. - Grouping GrOUP T
o ' 3 based on g /Grou -dependenzt modeI;
Increase weights of the loss of less frequent FP words. ® FPusage | & Training p-depend:
> > [Group 1 ] Group 2 J
Q Group 2) - AK ~
Rich word representation model - . o Use the model of the group
. . P A with similar FP usage
* Use BERT [8] as rich word representation model. ~ | o
v: |'ll explain FP prediction.
i)
3. Experiment
Experimental conditions Group-dependent models
* Criteria: precision / recall / F score / (specificity) * Higher scores than the universal model for both position and word,
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* Cross validation except for group 2 for pOSItIOn * Consider 4 positions:
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