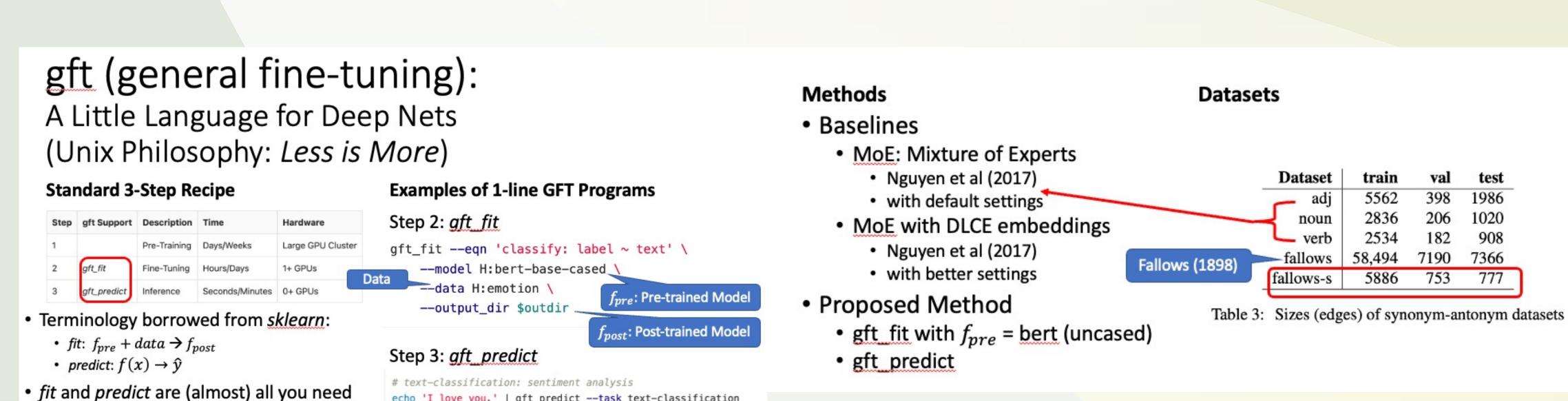


Training on Lexical Resources

Kenneth Church, Xingyu Cai, Yuchen Bian

Baidu, USA



Evidence for Leakage

Paths of Length 1

- Consider 99 edges of length 1
 - Example: good ↔ awful
- These are particularly
- worrisome. The same edge is in
- both train and validation splits,
- but in different directions
- These 99 pairs are clearly leaking information across splits

Many Short Paths

Path Length	adj	noun	verb	fallows
0				2
1	99	59	60	946
2	80	7	15	3835
3	59	3	7	1156
4+	70	2	35	639
NA	90	135	65	612
total	398	206	182	7190

Table 10: For most pairs of words in the validation set, w_1 and w_2 , there is a short path from w_1 to w_2 based on edges in the training set.

Syn/Ant Classification → VAD Regression

- Motivation: classify → regress
- Concerns about leakage NRC-VAD is similar to sym/lex
- · but lexicon is fully-connected • 20k lemmas, w, where $VAD(w) \in \mathbb{R}^3$
- $y(w_1, w_2) = |VAD(w_1) VAD(w_2)|$
- Regression: $y \sim w_1 + w_2$ Standard test/val/train splits:
- Split lexicon by E
- But for generalizations to OOVs
- Might be more interested in splits by V (w)

word	Val	Arousal	Dom	Dist
open	0.620	0.480	0.569	0.00
unfold	0.612	0.510	0.520	0.06
reopen	0.656	0.528	0.568	0.06
close	0.292	0.260	0.263	0.50
closed	0.240	0.164	0.318	0.55
undecided	0.286	0.433	0.127	0.56

larities, though none of these correlations are large.

Agenda

Examples on hubs are (unnecessarily) long/complicated

aft programs are short (1-line)

No (not much) programming required

Syn/Ant Binary Classification

- From Words to Texts **MWEs: Multiword Expressions**
 - OOVs: Out of Vocabulary words Multi-Lingual
- Negation

Leakage with Standard Benchmarks

VAD Regression

VAD = Valance, Arousal, Dominance

MoE with better settings

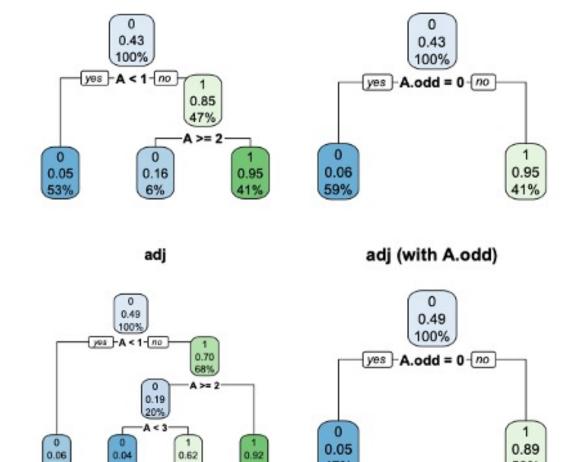
Test			Train	1	
	adj	noun	verb	fallows	fallows-s
adj	0.921	0.859	0.852	0.897	0.868
noun	0.841	0.917	0.857	0.828	0.785
verb	0.813	0.829	0.903	0.851	0.794
fallow	0.633	0.604	0.620	0.666	0.634
fallow-s	0.659	0.602	0.591	0.659	0.627

Proposed: Fine-Tuning

Test	Train				
	adj	noun	verb	fallows	
adj	0.908	0.657	0.713	0.881	
noun	0.773	0.877	0.792	0.797	
verb	0.767	0.722	0.906	0.867	
fallows	0.722	0.610	0.698	0.947	

A-Leakage

- Definitions
- Let e = (a, b) be an edge in val split
- Let $label_v(e)$ be the label on e in val
- Let $path_t(a,b)$ be the shortest path
- from a to b using edges from train
- Let A_t be the number of antonym labels on $path_t(e)$
- A-Leakage Heuristic:
- $label_v(e) \approx antonym iff A_t$ is odd



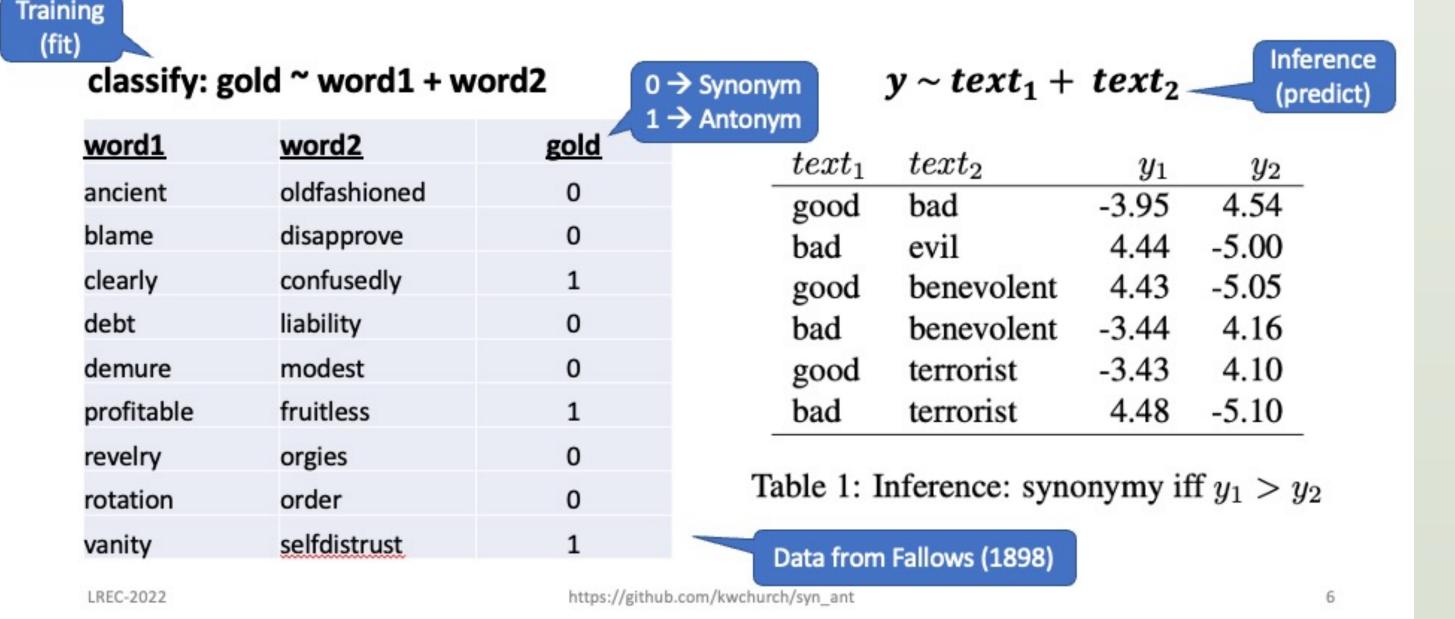
VAD Results (R2) R2 \rightarrow 1.0 (good); R2 \rightarrow 0 (bad)

- Train/Val/Test splits
- Based on V = 16k (of 20k)
- Remainder held-out to test generalizations to OOVs
- Results are promising when
- Splits are large and
- Representative of one another
- Experimented with training sets of 10k, 100k and 1M edges

Promising Transfer: Train with 1M Edges $R2(test) \approx R2(val) \approx R2(train) \approx 1$

BERTun	0.993	0.993	0.993
SciBERTun	0.993	0.993	0.992
ERNIE	0.991	0.990	0.990
SciBERTc	0.988	0.988	0.987
BERTmulti	0.988	0.987	0.991
BERTc	0.995	0.995	0.988

Training on Fallows Thesaurus



echo 'I love you.' | gft_predict --task text-classification

ch/ACL2022_deepnets_tutorial

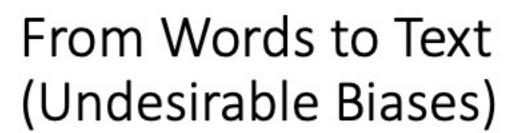
Delta (Proposed – MoE)

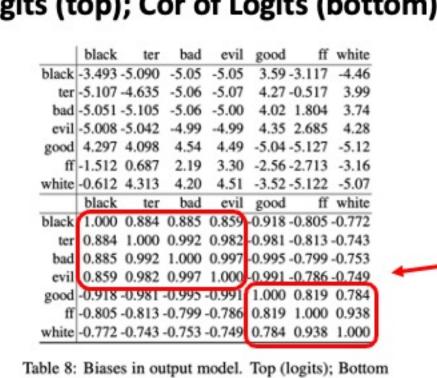
Test	Train				
	adj	noun	verb	fallows	
adj	-0.013	-0.202	-0.139	-0.016	
noun	-0.068	-0.040	-0.065	-0.031	
verb	-0.046	-0.107	0.003	0.016	
fallows	0.089	0.006	0.078	0.281	

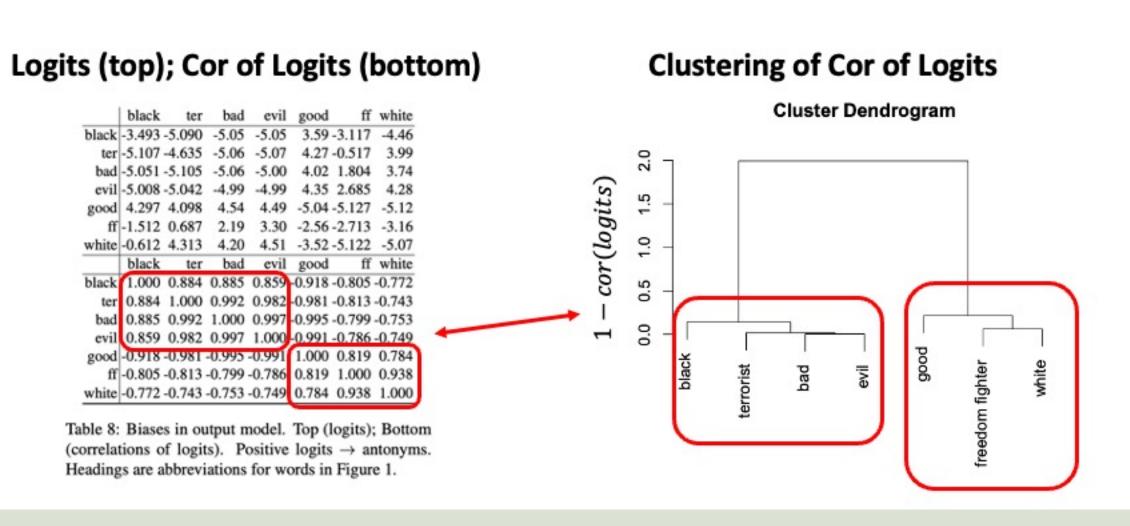
Conclusions

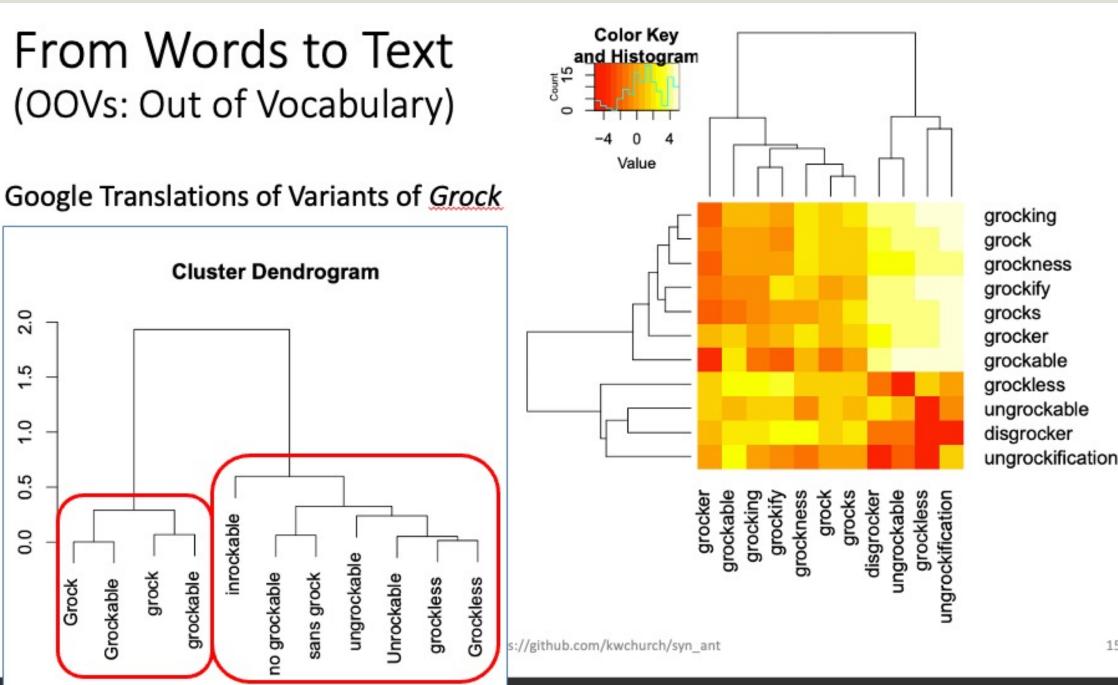
- Proposed fine-tuning deep nets on lexical resources
- Thesaurus (syn/ant classification)
- VAD Regression
- $y \sim text_1 + text_2$
- Proposed method is competitive with MoE baseline, and
 - Generalizes better to Fallows (1898)
- Words → Texts
 - Proposed method can be applied at inference time to MWEs, OOVs and longer tests in multiple
- On a cautionary note,
 - found evidence of leakage
 - · in standard benchmarks as well as Fallows (1898)
 - Work based on bad benchmarks
 - · may need to be retracted

- To address concerns with leakage,
 - · we introduced a new task: VAD regression Since VAD is fully-connected,
 - we could study sampling methods
- Transfer is more effective
 - · when splits are large and representative of one another
 - In such cases,
 - reduces training loss (in fine-tuning)
 - also reduces loss on other splits
- Proposed method:
 - effective for pairs of words in training set
 - · but less so for pairs of unseen words

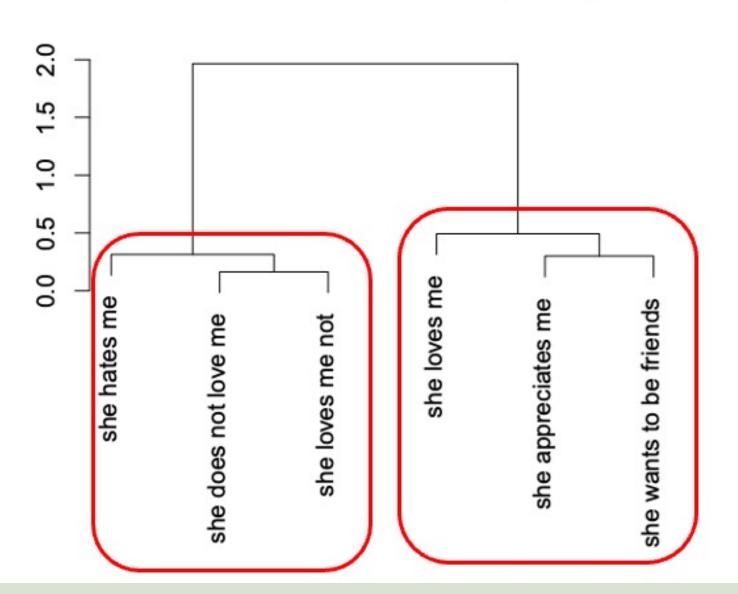








From Words to Text (Negation)



Morpheme Diagnostic

- Group words by affixes
 - overtake/take
 - overlook/look
- Plot y for pairs in each group
 - $y(w_1, w_2) = |VAD(w_1) VAD(w_2)|$
- Red baselines:
 - 0: distance for maximally similar pair • $\sqrt{2}$: distance for random pair
- Observations:
 - VAD varies systematically:
 - Small (similar in VAD): -s, -ism, -ly
 - · Large (dissimilar in VAD): -less, dis-, un-
 - Word2vec is large (almost everywhere)
 - · Even words that are morphologically related

· Almost all pairs of words are far apart

