Evaluating Transformer Language Models on Arithmetic Operations Using Number Decomposition

Matteo Muffo, Aldo Cocco, Enrico Bertino @ Indigo.ai matteo@indigo.ai, aldo@indigo.ai, e@indigo.ai

• GPT-3: the first Large Language Model

- Model to generate text
- Counts 175 billions parameters
- Able to solve tasks by receiving natural language instructions
- Able to work in the zero- and few-shot settings

- GPT-3 is able to perform computations between numbers of two/three digits, but struggles when the number of digits increases
- It did not effectively learn to perform arithmetic operations
- Do Transformer Language Models have enough reasoning capabilities to learn to perform arithmetic operations of unseen numbers?

D Experiments

Operations tested

Additions and subtractions between numbers of 2, 3, 4 and 5 digits Multiplications between number of 2 digits

Calculon models: the idea

- Fine-tune a Transformer Language Model to perform arithmetic operations following a *decomposition pipeline*
- In this decomposition pipeline numbers are decomposed in digit form before being processed (e.g. 868 \rightarrow 8 units, 6 tens, 8 hundreds)
- This approach aims to teach calculations as children learn at school: processing units with units, tens with tens and so on by evidencing the magnitude of digits

Inference input:

"Compute with pipeline 77868 plus 4606"

Generated text at inference time:

"Translate from number to decomposition: 77868 = 8 units, 6 tens, 8 hundreds, 7 thousands, 7 tot.

Baselines

Baseline approach: no manipulation is performed over numbers Example:

"*Compute 7918 plus 5112* = *13030*"

Spaced approach: a space is added between digits composing a number, so that each digit is tokenized singularly

Example:

"Compute 1201 plus 1302. 1201 plus 1302 = 2503. Final result = 2503"

Data

We create 9 training sets, each of which corresponding to a combination operation-approach

Addition and subtraction \rightarrow 3000 observations for each number of digits tested, for a total of 12000 observations

Multiplication \rightarrow 3000 observations composed by couples of 2-digit numbers exclusively

Models tested

GPT-2: start from the pre-trained gpt2-small \rightarrow fine-tune it on a training set \rightarrow we obtain 9 different fine-tuned models (one for each pair

Translate from number to decomposition: 4606 = 6 units, 0 tens, 6 hundreds, 4 thousands.

Sum 8 units, 6 tens, 8 hundreds, 7 thousands, 7 tot + 6 units, 0 tens, 6 hundreds, 4 thousands = 4 units, 7 tens, 4 hundreds, 2 thousands, 8 tot. Translate from decomposition to number: 4 units, 7 tens, 4 hundreds, 2 *thousands, 8 tot = 82474*"

We denote as Calculon the models fine-tuned following this decomposition pipeline

Results

Accuracy scores obtained by different models and approaches tested

Approach	2D+	3D+	4D+	5D+	2D-	3D-	4D-	5D-	2Dx
Calculon	99.75	81.95	80.05	72.85	100.00	81.35	78.60	75.65	14.65
Baseline	53.35	5.60	0.05	0.00	22.30	1.60	0.05	0.00	5.25
Spaced	90.10	77.75	67.10	57.95	45.20	11.80	1.35	0.15	5.1
GPT-3 FS	100.0	80.4	25.5	9.3	98.9	94.2	26.8	9.9	29.2
GPT-3 FS decomp	3.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	1.0

Input salinecy scores for a Calculon models

operation-approach)

GPT-3: few-shot approach: 4 few-shot examples following the decomposition pipeline + couple of numbers to test in the input prompt, no fine-tuning

Comp ute with 2.51% 1.10% 0.96%	n pipeline 1.62% 2	321 plus	5 62 . .69% 1.37% 0.80%	>> Trans lat 1.51% 2.12%	te from number 0.42% 0.82% 0	to decom position .87% 2.24% 1.36%	n : 321 = 1.27% 1.98% 2.11% 4.	1 uni .60% 1.79%
, 2 tens	, 3 hu 0.42% 0.51% 0.819	ndreds . % 0.70%	Trans lat	te from number	to decom posi	tion : 5 62	= 2 units 94% 2.46% 1.57% 0.	, 6 65% 0.66%
tens , 5	hundreds 1.18% 1.2	Sum 1	units , 1.52% 0.929	2 tens , 6 0.77% 1.09% 0.83%	3 hundreds	+ 2 units , 75% 3.79% 1.21% 0.90%	6 tens , !	5 20%
hundreds = 9.49%	3 units	, 8 te	ens, 8	hundreds .	Trans late fro	om decom position	to number :	3
units , 8	tens ,	8 hundre	eds = 8	83 < endofte	ext >			

Conclusions

When fine-tuned with the decomposition pipeline here proposed, a Transfomer Language Model can effectively learn to perform calculations generalizing to unseen numbers

Highlighting digits magnitude can bring a remarkable benefit

GPT-3 do not show the same benefit using the decomposition pipeline in the few-shot setting

Multiplication remains an unsolved task