BERTology for Machine Translation: What BERT Knows about Linguistic **Difficulties for Translation**

Yuqian Dai, Marc de Kamps, Serge Sharoff

University of Leeds

1. Contributions

- What does BERT know about syntactic dependencies before and after finetuning for Neural Machine Translation (NMT)?
- We use probing to detect changes in syntactic knowledge before and after fine-tuning. Prediction of some syntactic dependencies is negatively affected by fine-tuning. • Which syntactic dependencies lead to a drop in translation quality across different languages? We recognise certain types of syntactic dependencies linked to low-quality machine translations.
- Syntactic dependencies are related to BERT's layers but are more likely determined by the working mechanism of BERT itself during the pre-training.
- BERT has already formed a syntactic pattern during the pre-training, and the fine-tuning of machine translation only changes the performance of the downstream task.

When our BERT-based NMT engine produces a non-sensical translation, does it "understand" the syntactic structure in this sentence?

MT herat, her country's russian federation, was also very pleased. **Reference** Catherine of Russia was also very satisfied.

"appos" linking Catherine and the Queen of Russia in the source sentence is a possible cause of problems in rendering the first half of this translation.

2. Construction of NMT Engines

• Approximately 1.2 million (1.2M) parallel sentence pairs for Chinese, Rus-

4. Translation Quality Estimation

• Using Quality Estimation (QE) to evaluate translation quality without reference translations. Choosing highest 20% score as high-quality translations and lowest 20% score as low-quality translations.

> De→En Zh→En Ru→En High-quality range 0.808-0.891 0.845-0.917 0.822-0.896 Low-quality range 0.061-0.519 0.325-0.742 0.226-0.533

- Using chi-square test to detect whether there is a correlation between syntactic dependencies and the quality of machine translation.
- The null hypothesis (h_0) that translation quality and syntactic dependencies are unrelated is not valid. Instead, the alternative hypothesis (h_1) is accepted that translation quality is associated with syntactic dependency

Languages	Dependencies	df	p-value	Test statistic	χ^2
Zh	32	31		43.77	171.4
Ru	29	28	0.05	41.34	154.9
De	30	29		42.56	182

• Using chi-square test to detect which syntactic dependencies are associated with low-quality translations.

• Syntactic dependencies ordered according to χ^2 in the German examples.

Quality Estimation Examples for German Dependency Quality F1-score

		High	Low	χ^2	Layer-6	Layer-12
De	flat	0	9	-	0.25	0
	appos	10	96	739.6	0.42	0.25
	flat:name	6	61	504.1	0.52	0.39
	compound	25	72	88.3	0.47	0.51
	obl	212	327	62.3	0.63	0.61
	compound:prt	10	34	57.6	0.92	0.48
	case	324	459	56.25	0.97	0.84
	obl:tmod	14	34	28.5	0.55	0.62
	nmod:poss	39	67	20.1	0.96	0.85
	nsubj	241	308	18.6	0.73	0.68
	advcl	27	47	14.8	0.34	0.36

sian and German. BER	T is fine-tuned as	s the encoder in	the NMT engine.
----------------------	--------------------	------------------	-----------------

Language	Dataset	BLEU
Zh o En	UNPC	56.34
$Ru\toEn$	UNPC	55.85
${\sf De} o {\sf En}$	Europarl	38.06

3. Probing task

• A syntactic dependency indicates the relationship between two words. BERT needs to predict the syntactic dependency of the current word without specifying the target word in the sentence.

• We test for theses three languages on the PUD and GSD corpora from the Universal Dependencies.

• Worst relations for all languages specific syntactic dependencies are likely to be a significant cause of low-quality translations.

Dependency	Quality	F1-score	
Zh/Ru/De	χ^2	Layer-6	Layer-12
appos	396.9/48.3/739.6	0.4/0.36/0.42	0.48/0.47/0.25
flat	242/900/-	0.7/0.22/0.25	0.74/0.18/0
flat:name	2704/168.7/504.1	0.68/0.82/0.52	0.78/0.86/0.39
obl	24.6/66.1/62.3	0.39/0.71/0.63	0.31/ 0.66/0.61
case	24.2/40/56.25	0.82/0.98/0.97	0.76/0.91/0.84

Most Universal Dependencies by BERT decrease after NMT fine-tuning.

5. Conclusions

1. F1-score for detecting most Universal Dependencies by BERT decreases after NMT fine-tuning.

- 2. Translation quality is associated with syntactic dependencies.
- 3. Common low-quality translation problems occur in the context of specific syntactic dependencies: "appos", "flat", "flat:name", "obl", "case".
- 4. The F1-score for those dependencies causing low-quality translations are relatively low, and often they decrease with training.
- 5. BERT has a different syntactic dependency performance as a standalone monad than an NMT engine.