Cross-lingual Linking of Automatically Constructed Frames and FrameNet

Ryohei Sasano (Nagoya University, Japan)

1. Introduction

> Semantic frame

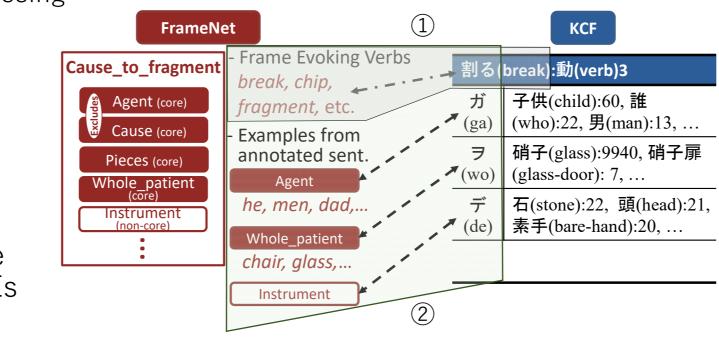
- A conceptual structure describing an event, relation, or object along with its participants
 - Several resources, such as FrameNet (Baker+'98), VerbNet (Kipper+'00), and PropBank (Palmer+'05), have been manually elaborated
 - Various systems have been proposed for automatic construction of frame knowledge from raw corpora (Korhonen+'06, Kawahara+'14)

> FrameNet

- A representative frame resource
- Providing rich semantic representations
- Including 200K+ frame-annotated sentences
- Being extended to roughly a dozen languages

> Kyoto University Case Frame (KCF)

- Example-based Japanese semantic frames (Kawahara+'06)
 - Constructed by clustering examples of predicates and their arguments according to semantic similarity
 - Examples are collected from a large corpus
- Frames are constructed for each meaning of each predicate
 - Japanese verb '割る' has several meanings such as 'fall below' and 'break')
 - In KCF, 'case' does not refer 'deep case'
- Each frame describes the surface cases
 e.g., ガ (ga, nominative), ヲ (wo, accusative)

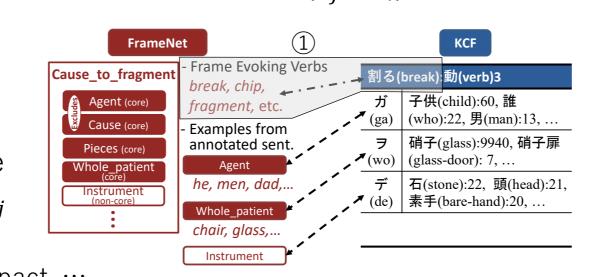

3. Cross-lingual Frame Linking

> Overview

- We link each KCF frame to one of the FrameNet frames
 - KCF frames included in KNP 4.19 (https://nlp.ist.i.kyoto-u.ac.jp/?KNP)
- FrameNet 1.7 (Ruppenhofer+'16): Frame evoking words, called lexical units (LUs), and instances of frame elements (FEs) are extracted from the frame annotated sentences as the preprocessing

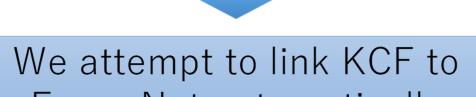
Two steps

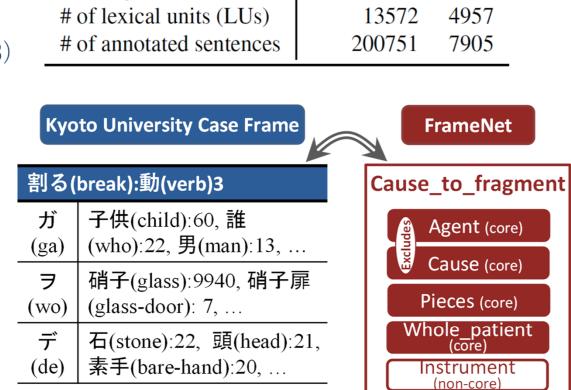
- Extracting candidate frames by taking only the verb into account
- ② Finding an alignment between a KCF frame and a FrameNet frame by also considering FEs



➤ Candidate Frame Extraction

- Extracting candidate frames by only considering the verb
- When given a KCF frame CF_{v_j} , we calculate $sim(v_j, LU_i)$, a cross-lingual similarity between verb v_i and each of the LUs of FrameNet frame FN_i
- We use the top three cosine similarities of supervised cross-lingual word embeddings (https://github.com/facebookresearch/MUSE) as $\sin(v_j, LU_i)$


Ranking the FrameNet frames


- by the similarity score and extract the top 100 frames as the candidate frames for the given KCF frame CF_{v_i}
 - e.g., $CF_{v_i} = 割る(break):3$
 - ⇒ Cause_hram, Cause_to fragment, Impact, …

> Manual Development of Frame Resources

- Labor-intensive process
- Especially associating with frames in other languages is difficult
- Japanese FrameNet (JFN) (Ohara'13)
 has been developed for 20 years,
 but its coverage is still limited
- The process can be facilitated
 - if there is a base frame resource associated with FrameNet

PropBank
break.01
break, cause to not be whole

0: breaker
1: thing broken
2: instrument
3: pieces
4: arg1 broken
away from what?

of cognitive frames

FrameNet

Cause_to_fragmen

Agent (core)

Cause (core)

Pieces (core)

Whole_patient (core)

Kyoto University Case Frame

(who):22, 男(man):13, ...

石(stone):22, 頭(head):21,

(de) | 素手(bare-hand):20,

FrameNet JFN

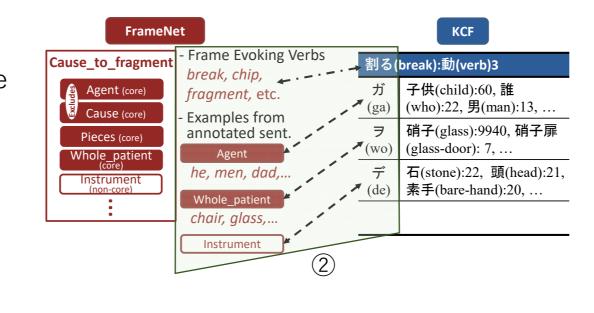
割る fall below :動(verb)1

| 株価(stock price):308,

FrameNet automatically

2. Related Work

➤ Linking frame knowledge


- SemLink (Palmer+'09) manually connects PropBank, VerbNet, and FrameNet
- (Ohara+'18) linked KCF with JFN using crowdsourcing
- Linking automatically constructed lexicalized frames to manually crafted knowledge
- Similar to our setting, but not cross-lingual

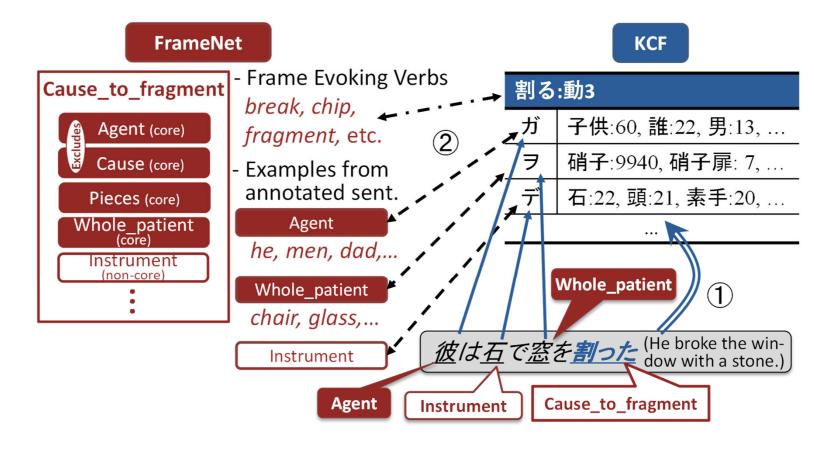
> Annotation projection

- Popular framework for transferring frame knowledge to other languages (e.g., Pado+'09, Akbik+'15, data. Yang+'18, Marzinotto'20)
- Exploiting the structural equivalences present in parallel corpora

Frame Alignment

- For each candidate FrameNet frames FN_i , we calculate the frame alignment score against the given KCF frame CF_{v_i}
 - We use five Japanese surface cases as the target of the alignment, J(ga), J(wo), L(ni), L(to), and J(de)
 - As for the FEs, we examined two settings
- CORE-ONLY:
 Considering only the core FEs as the target of the alignment
- 2. ALL-FES:
 Considering both core and non-core
 FEs as the target of the alignment

- We calculate the alignment score for all combination of the pairs of target FEs and cases, with the following constraints
 - The 'ga' is always associated with one of the FEs
 - Two different cases are not allowed to be aligned to the same FE
- Alignment score is calculated as the product of $sim(v_j, LU_i)$ and the sum of the individual case alignment scores $score(CA_k)$
 - $score(CA_k) = cos(emb(FE_m), emb(c_n)) * wt(c_n)$
 - $\operatorname{emb}(FE_m)$: the average of the embeddings that are included in the instances of the m-th FE
 - emb(c_n):the average of the embeddings that are included in the instances of the n-th case
 wt(c_n): is the weight of case c_n defined as the square root of the total frequency of the case instances
- We take the highest alignment score for each FrameNet frame as the frame score and rank the FrameNet frames by their scores


4. Experiments

> Evaluation

- No evaluation data for the link between KCF and FrameNet
- We use data from Japanese FrameNet, in which FrameNet frames are manually annotated to words in Japanese text
 - KNP, a Japanese predicate argument structure analyzer, can assign a KCF frame to each verb in Japanese text
 - If the frame to which the assigned KCF frame is linked matches the manually annotated frame, the link can be considered correct
- In this study, 1182 verbs from the annotated sentences in JFN were used for evaluation
- We exclude those appearing as passive or compound verbs, so that the accuracy of the link itself could be evaluated

> Overview of the procedure for evaluation

- 1. Analyze predicate argument structure with KNP
- 2. Convert the KCF frame and its cases to a FrameNet frame and FEs

> Frame ranking results

Setting \setminus Recall	@1	@3	@5	@10	@30	@100
VERB-ONLY	0.367 (434/1182)	0.575 (680/1182)	0.629 (744/1182)	0.717 (847/1182)	0.804 (950/1182)	0.910 (1076/1182)
CORE-ONLY	0.398 (471/1182)	0.573 (677/1182)	0.641 (758/1182)	0.719 (850/1182)	0.815 (963/1182)	0.910 (1076/1182)
ALL-FES	0.437 (517/1182)	0.595 (703/1182)	0.657 (777/1182)	0.726 (858/1182)	0.828 (979/1182)	0.910 (1076/1182)

- We evaluated link accuracy by recall@k, the percentage of manually annotated frames that were ranked in the top k-th
- VERB-ONLY corresponds to the ranking for candidate frame extraction
- This result shows that taking FEs, including non-core FEs, into account was beneficial for ranking the FrameNet frames
- ALL-FES ranked the annotated frame in the top 5 for 65.7% and the top 10 for 72.6%, which would help the manual expansion of the frame-annotated sentences in JFN

5. Conclusion and Future Work

➤ Automatic linking of KCF and FrameNet

- To support the development of cross-lingual frame resources
- Both core and non-core FEs should be taken into account

> Future work

- 1. Using other kinds of cross-lingual word embeddings
- 2. Exploring the machine learning-based approach with additional features such as FrameNet hierarchy
- 3. Extending the scope of linking to non-verbal case frames
- 4. Exploiting our approach for manual expansion of JFN