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ELRC action:

e AIm: minimising language barriers across European Union
e Two language technology assessments involving
consultation round:
m Automated anonymisation
m Multilingual Fake News Processing

Automated Anonymisation

e Anonymisation consists of removing personal
Identifiable information (PI1).

e |t Is Important when sharing language data without
violating the General Data Protection Regulation
(GDPR).

e |t Involves two steps:

m Detecting what should be anonymised via a
named-entity recognition (NER) system.
m Determining how it should be anonymised.

Consultation round with stakeholders
:} Identification of scenario for workflow using NE labels:

B T

NER model (NN)

Sentence list ¥ Sentence list with NEs

Petersen left his house on 5 December. B{ NER ]—V [PERSON Petersen] left his house on [DATE 5 December].

His car was found nearby in Baker St., Torquay. His car was found nearby in [STREET Baker St]., [CITY Torquay].
He wore a black coat. I He wore a black coat.

Preprocessing:
E—» - separate text and layout

A 4

Anonymisation:
use named labels as pseudonyms

- segmentation

: Sentence list with replaced NEs | Mapping table ﬁl .
Pt Postprocessing: \ | :
ol qu { - collapse segments ' PERSON left his house on DATE. CXX/ . Petersen = PERSON .

G - merge text and layout His car was found nearby in STREET, CITY. .~ : 5 December > DATE :
He wore a black coat. |

:} Development of proof-of-concept software:

Anonymisation specification: tools illustrating scenarios
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Multilingual Fake News Processing  Reserves Hit50
year low

r" Bnttany Plgftibone x 2 Follow e D::S:?aﬂu:??' e m -

#PizzaGate is a world-wide citizen investigation CO ronaVI rus B | OWGapOn = H OW So m'UCh Fake News. Never been more

now. It cannot be stopped. At this point, the . . voluminous or more inaccurate. But through

truth being brought to light is inevitable. Ch | na St()Ie CO ronaV| rus from |t all, our country is doing great!
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e Disinformation (fake news) on various topics Is spreading
quickly.

e Need for tools for automatic detection of fake news Is
gaining urgency.

e Disinformation iIs a global phenomenon: it is important to
explore multilingual techniques for fake news detection.

:} Consultation round with stakeholders

Main findings:
- Lack of multilingual resources for detection of fake news
- Quick evolution of topics

Supervised approach for multilingual fake news detection in Russian (RU) and
French (FR) via use of machine translation (MT) and pretrained multilingual
language models:*
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Unsupervised approach by merely training on true news articles using Context
Vector Data Description (CVVDD) algorithm® + aligned vector representations.®
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