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LeSpell – A Multi-Lingual Benchmark Corpus of Spelling Errors
to Develop Spellchecking Methods for Learner Language
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Abstract

Spellchecking text written by language learners is especially challenging because errors made by learners differ both quanti-
tatively and qualitatively from errors made by already proficient learners. We introduce LESPELL, a multi-lingual (English,
German, Italian, and Czech) evaluation data set of spelling mistakes in context that we compiled from seven underlying learner
corpora. Our experiments show that existing spellcheckers do not work well with learner data. Thus, we introduce a highly
customizable spell checking component for the DKPro architecture, which improves performance in many settings.

Keywords: spellchecking, error correction, language learner data, multilingual

1. Introduction

Learner texts often differ both in the quantity and qual-
ity of errors from texts written by native speakers (Rim-
rott and Heift, 2008; Flor et al., 2015). Consider the
following example, taken from the MERLIN-DE cor-
pus (see Section 2): Ich schuche 3-4 zimm in Dreter
Stock. The orthographically correct version would be
Ich suche 3-4 Zimmer in dritter Stock. (‘I am look-
ing for 3-4 rooms on third floor.’) Note that grammat-
ical errors are not of interest here. We can see that
all misspellings in this example have an edit distance
greater than 1 to their corrections. The pronunciation,
however, is often still very similar (e.g. Dreter [döe:t5]
and dritter [döIt5]). Proficient writers, in contrast, of-
ten produce typos which result in misspellings such as
driktter, where an unrelated incorrect letter is intro-
duced.
Consequently, many downstream NLP tools are known
to decrease in performance when applied on non-
standard data such as learner language (Foster, 2010;
Keiper et al., 2016). Off-the-shelf spellchecking tools
are mostly targeted at errors of proficient writers and
fail to correct multi-edit errors produced by learners
(Rimrott and Heift, 2008). Therefore, there have been
several attempts to build spellcheckers that are special-
ized in learner errors, both for L2 (e.g. Boyd (2009))
and L1 learners, i.e. young children (e.g. Stüker et al.
(2011), Downs et al. (2020)). The different approaches
are hard to compare, however, because they have been
evaluated on different data sets and partly on different
languages. Therefore, it has not yet been determined
to what extent the approaches are transferable to other
learner populations and other languages.
In general, Flor et al. (2019) noted that most
spellcheckers have been evaluated on either proprietary
or artificial data. Therefore, they released TOEFL-
Spell, a publicly available benchmark spelling data set
which is based on real errors from L2 learners of En-
glish. However, there is yet no comparable benchmark
set for other languages or even for multiple languages

sharing a common format.
Also, general-purpose spellcheckers have mostly been
evaluated and compared on English data only (see e.g.
Näther (2020) for a comparison of 14 spellcheckers on
artificially created English data). To begin with, only
few spellcheckers are freely available off-the-shelf for
several languages. Popular exceptions are Hunspell1
and LanguageTool.2 Some of the other available tools
have not been specifically designed for a particular lan-
guage. They claim to be transferable, but they have not
been trained and evaluated on non-English data (e.g.
NeuSpell (Jayanthi et al., 2020)) or only paid versions
of a spellchecker come with models for different lan-
guages (see Jamspell).3
It is also an open question how well neural models
will work for learner data. Not only is data contain-
ing learner misspellings rare, it is also hard to synthe-
size. Even with a fine-tuned neural model available, a
drawback of it would still be that it is less transparent,
meaning that the main way of influencing its perfor-
mance is the choice of training data and that it is not
as straightforward to separately evaluate error detection
and correction.
Contributions Our aim is to foster research on
spellchecking from a multilingual learner language per-
spective. To this end, our paper makes the following
contributions:

1. We introduce LeSpell, a multilingual data set of
spelling errors by language learners, which con-
sists of spelling errors in context taken from texts
of first- (L1) and second-language (L2) learners
of varying proficiency levels from four different
languages (English, German, Italian and Czech).
The data set is derived from seven existing learner
corpora and transferred to a uniform XML-format.
We make all data publicly available. TODO:

1http://hunspell.github.io/
2https://github.com/languagetool-org/languagetool
3https://jamspell.com
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ing learner misspellings rare, it is also hard to synthe-
size. Even with a fine-tuned neural model available, a
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and correction.
Contributions Our aim is to foster research on
spellchecking from a multilingual learner language per-
spective. To this end, our paper makes the following
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• LeSpell is a multilingual benchmark data set of language learner spelling errors in context
• DKPro Spelling is a highly customizable spellchecking extension:

Default error correction setting (grapheme-based generation of 3 candiates, reranked Web1T 
trigrams) outperforms Hunspell & LanguageTool on 5 out of 7 LeSpell subcorpora
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