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INTRODUCTION

A Theory of Not Quite Everything

The general rule in psychiatry is: if you think you've found a theory that

explains everything, diagnose yourself with mania and check yourself into

the /aospz'ml.-l-

—SCOTT ALEXANDER

Can you predict the future? Yes, of course you can.

You can predict with near certain accuracy that in the next few seconds, you’ll
take a breath, and let it out again. Your heart will beat, somewhere between one
and three times a second. Tomorrow morning, the sun will come up, at a
particular time, which depends on your latitude and the time of year, but which
nonetheless you can f ind out with great accuracy. All of these events you can
predict with confidence.

You can also predict that the train will arrive at a certain time, or that your
friend will arrive on time at the restaurant at which you’ve arranged to meet
them. Though, depending on the rail company, or your friend, you might be less
confident in that.

And you can predict that the world’s population will continue to grow until
around the middle of the century, and then start to fall again. You can predict
that global average surface temperatures in the year 2030 will be higher than they
were in the year 1930.

The future isn’t opaque. You can see into it. Some parts are more predictable
than others—the Newtonian dance of the planets we can predict out for



thousands of years; the Lorenzian chaos of the weather, really only a few days.
But you can peer through the murk, after a fashion.

That’s not what people normally mean when they say, “I can predict the
future.” They are referring to something mystical, some psychic or magical
vision. We probably can’t do that. (You’ll read about a scientist in this book who
thinks we can, and you’ll also read about why he’s almost certainly wrong.) But
we don’t need to. All that we do, all the time, is predict the future. We couldn’t
function if we couldn’t. We make very basic predictions, like “the air will
continue to be breathable,” implicitly, with every breath we take. We make more
complex predictions, like “The corner shop will have granola when I get there,”
each time we make a decision. We’re not basing them on mystical visions, but on
information we have gathered in the past.

The thing with all these predictions is that they are #ncertain. The universe
may or may not be deterministic; perhaps if we had perfect, godlike knowledge
of the position, movement, and qualities of every particle in the universe, we
could perfectly predict everything, the fall of every sparrow. But we don’t.
Instead, we have partial information. We can see bits of the universe, imperfectly,
through our imperfect senses. We have best guesses for the way those bits move
—we know the human-shaped bits tend to seek food and company; we know the
rock-shaped bits tend to sit still. We can make messy, imperfect predictions with
that information.

Life isn’t chess, a game of perfect information, one that can in theory be
“solved.” It’s poker, a game where you’re trying to make the best decisions using
the limited information you have.

This book is about the equation that lets you do that.

“Someone told me,” said Stephen Hawking after the publication of A4 Brief
History of Time, “that each equation I included in the book would halve the

sales.”? This book is about an equation, so it will be difficult to avoid including

at least one.l

That equation is Bayes’ theorem, or Bayes’ rule. As equations go, it is simple.
It looks like this:



_ P(8\A)-P(R)
p(ale) = ZER LD

My dirty little secret is that I hate reading equations. I can do it, sort of. But
it’s a slog. That’s embarrassing because I have now written three books that are
either entirely or partly about math. But my brain grinds to a halt at the sight of
a 2 symbol. And I suspect that quite a lot of readers feel the same, which is
probably why Hawking was warned about including them in his book.

But equations aren’t secret codes or arcane magic. Each little symbol (I have
to remind myself) denotes a simple action. It’s just a sort of shorthand.

In this case, Bayes’ theorem is about probability: about how likely something
is, given the evidence we have. Specifically, it’s about a particular form of
conditional probability. The vertical line | is shorthand for “in the event that” or
“conditional on.” So P(A|B) is the probability of an event A happening, given
that event B has happened.

Here’s a simple example of conditional probability: say you wanted to know
the probability of drawing a heart from a deck of cards. You know there are
thirteen hearts in a standard fifty-two-card deck, so your probability—P(QQ), if
you like—is 13/52, or 1/4. Or, in probability notation, p = 0.25. But then you
draw a card, and it’s a club. What’s your probability now? Well, there are still
thirteen hearts in the deck, but only fifty-one cards in total. So your probability
is now 13/51, or p = 0.255. (The wavy equals sign means “approximately equal
to.”) That’s the probability of drawing a heart given that you’ve previously
drawn a club, (&7 | ).

Or: What’s the probability that it will rain on a given day in London?
Probably about 0.4: there are around 150 rainy days a year in London. But you
look out the window and you see that the clouds are dark and heavy. What’s the
probability now? I don’t know exactly, but higher: the probability of rain grven
that it’s cloudy is higher.

Bayes’ theorem is the same idea, but taken a bit further. In natural language it
means: the probability of event A, given event B, equals the probability of B
given A, times the probability of A on its own, divided by the probability of B

on its own.



Imagine that you have a disease that is spreading through your society. That
shouldn’t be too hard to imagine, given recent history.

You want to know whether you have the disease, so you take a test. On the
instructions that come with the test, there’s a little note: “This test is 99 percent
sensitive and 99 percent specific.” What that means is that if you have the
disease, there’s a 99 percent chance that the test will, correctly, tell you that you
have the disease; if you don’t have the disease, there’s a 99 percent chance that it
will tell you, correctly, that you don’t have the disease. Another way of saying
this is that the test has a “false negative rate” of 1 percent, and a “false positive
rate” also of 1 percent.

So you take the test, and you get a positive result: two lines show up. What
does that mean? You might, reasonably, assume that it means it’s 99 percent
likely that you have the disease.

But it doesn’t. And the reason it doesn’t is Bayes’ theorem.

Bayes’ theorem is strange. It is a simple equation, which you can write on a
line, and which is composed only of mathematical operations that most eight-
year-olds could carry out—multiplication and division. It was first worked out
by an eighteenth-century gentleman hobbyist, a part-timer whose day job was
being a Nonconformist minister in Tunbridge Wells, England. But it has
profound implications—it’s why a cancer test can be 99 percent accurate even
though 99 percent of the people it says have cancer don’t; it tells us why DNA
forensics might only have a 1 in 20 million chance of wrongly matching an
innocent suspect, but still be more likely than not to send the wrong person
down. It explains why scientific results can be “statistically significant” and yet
still very probably wrong.

Bayes’ theorem also reveals fascinating philosophical divides. Is “probability”
a real thing? When we say that there’s a one in six chance that we’ll roll a one,
what do we mean? Is that some fact about the universe, or just a statement about
our beliefs in the world? And can one-off events have probabilities? If I say
there’s a 90 percent chance that Man City soccer club will win the league in
2025, what does that mean?

When we make decisions about things that are uncertain—which we do all
the time—the extent to which we are doing that well is described by Bayes’



theorem. Any decision-making process, anything that, however imperfectly, tries
to manipulate the world in order to achieve some goal, whether that’s a
bacterium seeking higher glucose concentrations, genes trying to pass copies of
themselves through generations, or governments trying to achieve economic
growth: if it’s doing a good job, it’s being Bayesian.

Artificial intelligence is essentially applied Bayes. It is, at its most basic level,
trying to predict things. A simple image classifier that looks at pictures and says
they’re of a cat or a dog is just “predicting” what a human would say, based on its
training data and the information in the picture. DALL-E 2, GPT-4,
Midjourney, and all the other extraordinary Als that are wowing people as I
write, the things that can hold conversations with you or create astonishing
images from simple text prompts, are just predicting what human writers and
artists would make from a prompt, based on their training data. And the way
they do it is Bayesian.

Our brains are Bayesian. That’s why we are vulnerable to optical illusions,
why psychedelic drugs make us hallucinate, and how our minds and
consciousnesses work at all.

And Bayes’ theorem can help us understand why conspiracy theories are so
hard to shift, and why two people can look at the same evidence and have it tell
them entirely different things. Why is it that skeptics look at the scientific
evidence that convinces me that vaccines are safe and effective, and be unmoved
by it? It’s because, as dictated by Bayes’ theorem, your response to new
information is influenced by the beliefs you already hold. It’s not that vaccine
skeptics or conspiracy theorists are strange aliens whose brains work differently:
it’s that they are behaving entirely rationally, given their existing beliefs. And
Bayes’ theorem explains how that works.

It is a theory of not-quite-everything, perhaps. Nearly everything. Once you
start looking at the world through a Bayesian lens, you do start seeing Bayes’
theorem everywhere. My intention is to make you see it everywhere too.

The usual way to explain Bayes’ theorem is with medical testing. Here’s a
realistic example with plausible numbers: you are going for breast cancer
screening. You know that if a woman has cancer, the mammogram will correctly
identify it 80 percent of the time (it’s 80 percent sensitive) and miss it the other



20 percent. If she doesn t have cancer, it will correctly give the all clear 90 percent
of the time (it’s 90 percent specific), but give a false positive 10 percent of the
time.

You get the test. It comes back positive. Does that mean there’s a 90 percent
chance you’ve got breast cancer? No. With the information I’ve given you, you
simply don’t know enough to say what your chances are.

What you need to know is how likely you thought it was that you had breast
cancer before you took the test. One simple way of guessing that is finding out
what percentage of women your age have breast cancer at any given time. Let’s
say it’s 1 percent.

To keep things concrete, let’s imagine 100,000 women get tested. Of those
100,000, 1 percent—1,000—actually have cancer. Of those 1,000, the test will
correctly diagnose 800 of them—80 percent—but falsely give the all clear to 200.
Of the 99,000 who don’t have cancer, it will correctly give the all clear to 89,100,
but falsely diagnose cancer in 9,900. Or, in table form:

HAVE CANCER DOoNT HAVE CANCER
(I,OOO) (991 000)

20 Per cenT | |0 Pex cenT

EST
‘(IJ_o.rmve (TRve posimves) | (FASE posimves)
8 oo 9, 900
rest 20 Pex cenT | 90 Pex cent
€

NEAATVE (Facse Necanves) | (Teve neGanves)
200 29,100

So now you can tell. You walk into an oncologist’s office and get a positive
mammogram. Of the 10,700 women who got a positive result, 800 actually had
cancer. So your chance of really having cancer, if you get a positive result in this
case, is 800/10,700 ~ 0.07, or about 7 percent.

But this is entirely dependent on how likely you were to have cancer in the
first place. If you were testing a higher-risk population—say, older women with a
family history of cancer—it might be that 10 percent of the women you’re
testing have cancer. Then the math changes dramatically:



HAVE CANCER DOoNT HAVE CANCER
(10,000) (90,000)

20 Per cent | |0 Per cenT

TesT
PosiTIvE (TRve POSMVES) (FALSE Posninives)
8,000 9,000
rest 20 Pex cent | 90 Pex cent
€

NEQAT Ve (Facse necanves) | (Teve neaanves)
2,000 21,000

Now, instead of 800 true positives, you have 8,000. And your number of false
positives has gone down to 9,000. So the chance you’ve got cancer is 8,000
divided by 17,000, or about 47 percent, a much more worrying prospect. The
test hasn’t changed; all that’s changed is the prior probability.

What Bayes’ theorem does is tell you how much you should change your
belief. But in order to do that, you have to have a belief in the first place.

To go back to the equation (it won’t halve my sales again, I've already used it):

_ P(8\a)-P(A)
P(A\B) = P

What it gives you, once you run the numbers, is P(A|B): the probability of A,
the event, given B, the evidence. So the probability of having the disease, given a
positive test result. That’s all you’re really interested in: I've got the result, so
how likely is it that I have the disease?

But what the “80 percent sensitive” statistic gives you is the exact opposite. It’s
P(B|A), the probability of B, given A. It answers this question for you: How
likely am I to see this result, given that I have breast cancer?

It might sound unimportant, but it’s the difference between “There’s only a

1 in 8 billion chance that a given human is the pope” and “There’s only a 1in 8

billion chance that the pope is human.”>

In order to work out the thing we really want to know, we need more
information. In the example of the cancer test, we need to know how common
breast cancer is in the population being tested. In medical terms, that’s the
prevalence or the background rate, but in Bayes’ theorem in general, it’s known
as your prior probability, or “prior.”



In medical testing, your prior is often relatively easy to work out, or at least
straightforward to define. If you’re trying to work out someone’s risk of
Huntington’s disease, you can look up diagnoses recorded in general practice

records® and estimate that about 12.3 people per 100,000 have it.

For other situations, it’s much more difhicult. If you want to know how likely
it is that Russia will invade Ukraine, what’s your prior probability? How often
Russia has invaded Ukraine per year? How often one country invades another?
How often one country invades another when they have just sent a whole load
of tanks to that country’s border?

Take another example. How likely is it that this scientific hypothesis of mine
is true, given that I've just done an experiment and seen some particular data?
Let’s say that, if my hypothesis was false, I'd only expect to see data like this one
time in every twenty. Does that mean I can say that the hypothesis is probably
true? No—it depends on how probable my hypothesis was before I began my
experiment, my prior probability. But how on earth do I work that out?

And another. How likely is it that this person is guilty, given some forensic
evidence? If I've got DNA evidence that would only show up by chance one
time in a million, does that mean there’s only a one-in-a-million chance that I've
got the wrong suspect? No: it depends how likely it was that you had the right
suspect in the first place. Again: How do you even start to put numbers on these
things?

We’ll get into all that. (There are people who do it for a living.) But the
important thing is that you have to start with a prior probability, and use Bayes’
theorem. If you don’t, you end up in some strange places.

The first place most people come across Bayes’ theorem is in medicine, so let’s
start there.

I’ve been mildly obsessed with Bayes’ theorem for years. I first read about it in
Ben Goldacre’s “Bad Science” column for the Guardian in the early 2000s. Since
then, I've steadily become more fascinated. I've written three books, including
this one, and Bayes makes an appearance in all of them. There’s something
wonderful about how counterintuitive the theorem is. What do you mean, a test
being 99 percent accurate isn’t the same as a 99 percent chance that it’s right?
What mad language are you talking? If you follow the really-not-that-difficult



reasoning, it becomes clear, but—for me, at least—it never quite loses its
uncanny, otherworldly feeling.

But over the last three years, since early 2020, when COVID-19 started
marching across the world, it became much more salient. Way back in April
2020, when we were still deep in the first lockdown, people, including former
UK prime minister Tony Blair, were calling for “immunity passports,” antibody
tests that could tell if someone had had COVID or not. If they had, those people
should be allowed out and about. (This was back before we realized you could
get multiple infections pretty easily.)

At the time, antibody tests were just coming out. One that had just been
issued emergency approval in the US reported roughly 95 percent sensitivity and
speciﬁcity.-s-

Which sounds pretty good. But in April 2020, probably about 3 percent of
British people had had the virus. That’s your prior probability. If you tested a
million people with this test, you'd expect about 30,000 to actually have had
COVID. Your test would correctly identify about 28,500 of them. But of the
970,000 people who hadnr 't had COVID, it would incorrectly say that 48,500 of
them had had COVID.

So of the 77,000 positive results you'd probably get, little more than a third
would really have had the disease. (That’s your posterior probability.) If you had
tested all 65 million Britons, and issued “immunity passports” to everyone who
got a positive result, it would have meant telling about 3 million people that they
were safe to go and hug their immunocompromised grannies when they very
much weren’t. You just couldn’t have made any sense of this without some sort
of grasp of Bayes.

In Britain, there was another Bayes-related controversy when a few members
of the “lockdown-skeptical” commentariat became dimly aware of it. The
former government minister John Redwood was probably the most famous: he

demanded that “government advisers today need to tell us how they are going to

stop false test results distorting the ﬁgures.”-é-

What had happened was that one of them had misinterpreted an interview
with Professor Sir David Spiegelhalter, a cheerful statistician who spent a lot of
time on national TV and radio during the pandemic patiently explaining testing



accuracy or vaccine efficacy. They worked out that just because a test has a 1
percent false positive rate, it doesn’t mean that only 1 percent of positives are
false. That was back between the first and second waves, when we were all doing
polymerase chain reaction (PCR) tests every time we thought we had the sniffles.
At the time, the prevalence of COVID in the British population was pretty low
—lockdowns reduce infections!—but seemed to be creeping back up.

But the COVID contrarians thought that the apparent increase was an
illusion that could be explained away with Bayes’ theorem. About 0.1 percent of
people had COVID at the time. If you tested people at random, and your test
correctly identified people who didn’t have COVID 99 percent of the time, and
people who did have COVID 90 percent of the time, more than 90 percent of

your positives would be false L

This is all completely true. But they hadn’t pushed the Bayesian reasoning far
enough. First: Is the prior probability really 0.1 percent? Sure, if you’re testing
the population completely at random. But we weren’t: we were testing people
who had symptoms or who had come into contact with a confirmed case. Those
people would be much more likely to have the virus. How much more likely? We
don’t know, but even if only 1 percent of them genuinely had COVID, the
percentage of your total positives that are false drops to 50. If 10 percent of them
do, about 90 percent of your positive test results will be real.

And, of course, we’re assuming that the false positive rate really is 1 percent.
That seems amazingly unlikely. At one point in summer 2020, when COVID
had died down a bit, the total percentage of tests coming back positive, whether
false or true, was 0.05 percent, so the false positive rate can’t reasonably have
been higher than that. If we use that, then with a COVID prevalence of 0.1
percent, your false positives drop to about 35 percent. If we assume that the
prevalence in the testing population was higher, for the reasons outlined above,
then it would be lower still.

But it’s not just COVID. You can’t make sense of pretty much any form of
medical testing without invoking Bayes.

The NHS in England offers three kinds of routine cancer screening: breast,
cervical, and colon. Prostate screening is available for men over fifty if they ask
for it, but it’s not routinely offered. Why not? Cancer screening just sounds like



a good thing. We all know that early detection improves outcomes. Why
wouldn’t you want to do a test that tells you if you’ve got cancer or not?

The answer, as with everything in this book, can be found in Bayes’ theorem.

Prostate cancer screening is carried out with something called a prostate-
specific antigen (PSA) test. It’s pretty simple. You get a blood test, and if the
levels of PSA in your blood are above a certain level—usually three or four
nanograms per milliliter—then you’re sent for further testing, such as a scan or a
biopsy. High PSA can be a sign of prostate cancer, although it can also be a sign
of infection, inflammation, or just age.

PSA screening is not as accurate as the tests we’ve been talking about so far.
According to the National Institute for Health and Care Excellence (NICE), the

UK’s medical advisory body,-7- if you were to screen for PSA with a cutoft of
three nanograms per milliliter, then it would correctly identify about 32 percent
of patients with cancer (sensitivity) and about 85 percent of cancer-free patients
(specificity).

About 2 percent of men in their fifties have prostate cancer.® If you tested a
million patients again, about 20,000 of them would actually have cancer. You'd
correctly identify about 6,400 of them. And of the remaining 980,000, you'd tell
about 147,000 that they needed a follow-up check. If you got a positive result on
this test, as a man in your fifties, there’'d only be about a 4 percent chance you
actually had cancer.

Is a 4 percent chance worth knowing about? Maybe. But bear in mind you'd
need extra tests, some of which are invasive, unpleasant, and somewhat risky.
Plus, of course, the NHS would have to pay for tens of thousands of MRI scans
and biopsies, at a cost of some millions of pounds, money that could have been
spent on statins or kidney transplants or nurses’ wages. And the thing about
prostate cancer is that, in many cases, it’s so slow growing that men don’t know
they have it; very often, men are found to have prostate cancer in postmortem
examination, having died of something else entirely.

This also raises another important point. The 32 percent sensitivity/85
percent specificity figures come from using a three-nanograms-per-milliliter
cutoft. But you could bump it up to four nanograms. What happens then?



Well, you get more specificity. The percentage of cancer-free patients that a
test correctly identifies as cancer-free goes up from 85 to 91 percent. But that
comes at a cost in sensitivity. The percentage of men with cancer whom it
correctly identifies goes down from 32 percent to 21 percent. If you tested your
million men again, now you'd get fewer false positives—down to 88,200—but
fewer true positives as well: just 4,200 out of the 20,000. In that situation, if you
got a positive result, you'd still only have about a 4.5 percent chance of actually
having cancer.

You can’t get around this. You can move the threshold up—have the cutoff at
five nanograms per milliliter, say—and you can reduce the number of false
positives, but only at the cost of increasing the number of false negatives. Or you
can move the threshold down, and decrease the false negatives, but only at the
cost of more false positives. It’s an unavoidable trade-off, cast in stone. The only
way around it is to use a different, better test. (This is analogous to the problem
of “statistical significance” in science, which we’ll come back to later.)

In breast cancer and colon cancer, the screening is rather more accurate. But
even there, it’s highly dependent on the prevalence of the disease in the

population. One major study-9- found that 60 percent of women who have
annual mammograms for ten years get at least one false positive result, leading to
referrals for extra investigations such as biopsies and causing “anxiety, distress,
and breast cancer—specific worry.” Is that worth it? It entirely depends on the
background rate of the disease in the population: your prior probability. Breast
cancer is rare among the young. If you test women under forty, even quite
sensitive and specific tests end up with very high numbers of false positives.
Among older women, it becomes more valuable, and NICE says that it is cost-
effective in women over ﬁfty.-l-p- But you can’t make decisions about it without
Bayes.

Would-be parents would do well to read up about Bayes as well. There’s a
kind of antenatal screening known as non-invasive prenatal testing, NIPT, in
which a blood sample is taken from a pregnant woman and tested for various
chromosomal conditions in the fetus. In the UK, the NHS offers it to women in
higher-risk categories. But it’s also available, for about £500 ($600), through
private clinics.



The test is sold as being 99 percent accurate. But once again, the accuracy of
the test on its own doesn’t tell you anything about how likely it is that your
result is correct. The conditions it tests for—Down’s syndrome, Patau’s
syndrome, and Edwards syndrome—are all rare. They’re also very serious. A
child with Down’s can lead a long and happy life, but will often require lifelong
care, while those with Patau’s and Edwards usually die in their first months or
years of life. It obviously matters a great deal to parents whether their test results

are accurate or not.

A review of the evidence found!! that doing NIPT tests on the general
population, rather than limiting it to high-risk pregnancies, often gave false
positives. The “positive predictive value”—that is, the percentage chance that a
given positive was a true positive—for Down’s syndrome was 82 percent, for
Patau’s syndrome 49 percent, and for Edwards syndrome just 37 percent.

If you limited your scope to just the high-risk categories, those numbers rose
significantly—for Edwards, the positive predictive value jumps to 84 percent.
That is, if you run the test on mothers-to-be at random, then nearly two out of
every three positive results you get will be false. But if you limit it to just those at
higher risk, fewer than one in six will be.

Again, this is pure Bayes. Your new data on its own cannot tell you the whole
story. You need to know your prior probability. It’s not a hypothetical or
academic problem. If you’re expecting a baby, and you do one of these tests and
get a positive result, Bayes’ theorem is central to your decision about what to do
next. And, as we’ll learn later, you can’t necessarily expect your doctors to be able
to help you. Doctors, just like the rest of us, tend to assume that a 99 percent
accurate test is right 99 percent of the time.

It’s not just medicine. In law, there’s a thing called the prosecutor’s fallacy,
which is quite literally just not thinking like a Bayesian. Imagine you do a DNA
test on a crime scene. You find a sample on the handle of the murder weapon
that matches the DNA of someone in your database. The DNA match is quite
precise—you'd only expect to see a match that close about one time in every 3
million.

So does that mean that there’s only a one-in-3-million chance that your
suspect is innocent? By now, hopefully, you’ll have realized that’s not the case.



What you need to know is your prior probability. Is there any particular
reason to think this person is the right one, or is your database just a random
selection of people from the British population? If so, then your prior
probability that the person you’re accusing is the criminal is one in about 65
million: there are 65 million Britons and only one person who committed this
particular crime. If you DNA-tested every Briton, you'd get about twenty DNA
matches, just by chance, plus the perpetrator. So the probability that you’ve got
the right suspect is about 5 percent, give or take.

But if you had narrowed it down to just ten suspects beforehand—say that
you’re Hercule Poirot and you know it’s one of ten people trapped in a country
mansion by a snowstorm—then it’s very different. Your prior probability is 10
percent. If one of those ten people match the DNA, then your probability of a

false positive is about one in three hundred thousand ™!

Once again, this is not some pettifogging point. Real court cases have turned
on these details. In 1990, a man called Andrew Deen was convicted of rape
partly on the basis of DNA evidence. An expert witness told the court that the
chance that the DNA came from someone else was just one in 3 million. But
Deen’s conviction was overturned (although he was convicted in his retrial)
because, as a statistician explained,—l--z- the two questions “How likely is it that a
person’s DNA would match the sample, if they are innocent?” and “How likely
is it that someone is innocent, given that their DNA matches the sample?” are
not the same, just as “How likely is it that a given human is the pope?” is not the
same as “How likely is it that the pope is a human?”

Sometimes, the errors go the other way. During the trial of O. J. Simpson, the
former American football star, for the murder of his wife, Nicole Brown
Simpson, the prosecution showed that Simpson had been physically abusive.

The defense argued that “an infinitesimal percentage—certainly fewer than 1 in

2,500—of men who slap or beat their wives go on to murder them”3 in a given

year.

But that was making the opposite mistake to the prosecutor’s fallacy. The
annual probability that a man who beats his wife will murder her might be
“only” one in twenty-five hundred. But that’s not what we’re asking. We’re



asking if a man beats his wife, and given that the wife has been murdered, what’s
the probability it was by her husband?

Gerd Gigerenzer, a German psychologist and scholar of risk, pointed out that
if that one in twenty-five hundred figure is right, then for every one hundred

thousand women who suffer domestic abuse, about forty will be murdered.1*
The base rate for murders among American women is about five in one hundred
thousand.

So the prior probability of an American woman who is a victim of domestic
abuse being murdered by her husband is about one in twenty-five hundred per
year. But we need to update that probability with new information—we now
know that the woman in question was murdered.

We can now do the Bayesian maths. If we take 100,000 domestic abuse
victims, then, presumably, in a given year, 99,955 are not murdered. But of the
remaining 45, 40 are murdered by their husbands. The defense had made the
inverse of the prosecutor’s fallacy: they had used just the prior probability, and
ignored the new information coming in.

Bayes’ theorem, while it helps us understand these errors of reasoning, can
tell us more profound things too. The word “inverse” in the last paragraph is key.
Often, statistics and probability will tell you how likely it is that you’ll see some
result by chance. If my dice are fair, I'll see three sixes at the same time 1 time in
every 216. If I was never at the crime scene, my DNA should match the sample 1
time in every 3 million.

Often, though, that’s not what we want to know. If we’re worried that the
person we’re playing craps with is a cheat, we might want to know “If he rolls
three sixes, what are the chances that his dice are fair?” If someone’s DNA
matches the sample at the crime scene, we might want to know what the chances
are that it’s a fluke. And that is the exact opposite question.

For quite a long time, the history of probability was about asking the first
question. But after the Reverend Thomas Bayes—about whom much more later
—started asking the second one, in the eighteenth century, it became known as
inverse probability.

As you’ll see over the course of this book, it’s strangely controversial. Bayes’
theorem has devotees and enemies, far more than any comparable one-line



equation. You don’t get people yelling at one another online over the formula for
the surface of a sphere, or over Euler’s identity equation.

But I think that’s because it affects everything. How likely is a scientific
hypothesis to be true, given the result of some study? Well, I can tell you the
probability that you'd see the results we’ve seen if it werent true, but that’s not
the same thing. To estimate how likely it is—and a growing number of scientists
argue that that’s exactly what we want statistics to be doing—we need Bayes, and
we need prior probabilities.

More than that, 4// decision-making under uncertainty is Bayesian—or to
put it more accurately, Bayes’ theorem represents ideal decision-making, and the
extent to which an agent is obeying Bayes is the extent to which it’s making good
decisions. Logic itself, all that stuft you may remember about “All men are
mortal; Socrates is a man; ergo Socrates is mortal” is just a special case of
Bayesian reasoning where you’re only allowed to use probabilities of one and
Zero.

We appear to be Bayesian machines. That’s true at a fairly high level: humans
are rubbish at working out Bayes’ theorem formally, but the decisions we make
in everyday life are pretty comparable to those that an ideal Bayesian reasoner
would make. Which, unfortunately, doesn’t mean we all end up agreeing—if my
prior beliefs are very different from yours, then the same evidence can lead us to
entirely different conclusions. Which is how we can end up with profound, but
sincere, disagreements on apparently well-evidenced questions about the
climate, or vaccines, or any number of other questions.

And we’re Bayesian at a deeper level too. Our brains, our perception, seem to
work by predicting the world—prior probabilities—and updating those
predictions with information from our senses: new data. Our conscious
experience of the world can be best described as our priors. I predict, therefore I

am.

L It’s nice to think, though, that had I managed it, I might have sold foxr copies

II. You test 1 million people. Of them, 1,000 actually have COVID. Your test identifies 900 of
them. Of the remaining 999,000, it incorrectly diagnoses 9,990 as having COVID. 900 + 9,990 =



10,890. 900 is about 9 percent of 10,890.

III. Obviously, that doesn’t necessarily mean it’s a 1-in-300,000 chance they’re innocent—their
DNA may have got on the weapon in some other way than them being the murderer.



CHAPTER ONE

From The Book of Common Prayer to the
Full Monte Carlo

BAYES THE MAN

Near Old Street Tube station, in Shoreditch in East London, there is a graveyard
known as Bunhill Fields.

Quite a few well-known people are buried in Bunhill. William Blake is
perhaps the most famous, or Daniel Defoe, author of Robinson Crusoe and A
Journal of the Plague Year. John Bunyan, author of The Pilgrim’s Progress, is
buried there too.

But for the sort of person who would, as I have on several occasions, be
walking from the Tube to the nearby Royal Statistical Society, Bunhill is best
known for being the final resting place of the Reverend Thomas Bayes.

Bayes was an eighteenth-century Presbyterian minister and a hobbyist
mathematician. In his lifetime, he wrote a book about theology and another
about Newton’s calculus. But what he is remembered for is his short work, “An

Essay towards Solving a Problem in the Doctrine of Chances.”! It was published
posthumously, in the journal Philosophical Transactions, after his friend Richard
Price found and edited some unfinished notes Bayes left behind.

This book is about the deceptively simple idea that Bayes came up with, his
theorem. It is, without exaggeration, perhaps the most important single
equation in history. But very little is known about the man himself. The fact



that we can only say he was probably born in 1701 gives you an idea of how hazy
our knowledge is.

David Bellhouse, an emeritus professor of statistics at the University of
Waterloo in Canada, wrote a biography of Bayes for the journal Statistical

Science® in 2004. The problem, he says, was that Bayes was a Nonconformist: a
member of a church that dissented from the teachings of the Church of
England.

To explain why that’s a problem, we have to go back a couple of centuries.
Fans of the Hilary Mantel novel Wolf Hall will remember that Henry VIII took
England out of the Catholic Church in 1533, in order to marry Anne Boleyn.
He died in 1547, several wives later, and after his death Archbishop Cranmer

introduced The Book of Common Prayer in 1549, making it obligatory for all

English churches to use it in their services.>

Henry’s daughter Mary disagreed with that decision and abandoned it in
1553, having Cranmer burned at the stake for heresy to drive the point home.
Then Elizabeth I reinstated the decision a few years later, and everyone carried
on using the Book for nearly a century, until the English Civil War.

During the period of the Commonwealth, from the execution of Charles I in
1649 until the restoration of the monarchy in 1662, the restrictions on forms of
worship were relaxed; but in 1662, Parliament passed an Act of Uniformity,
requiring that the Book be used in all services in England once more.

By now, some clergymen were used to the freedom they had enjoyed under
Oliver Cromwell’s Commonwealth. About two thousand of them refused—
mainly members of the Puritan tradition—and were ejected from their positions
in the Anglican Church. Many of them continued to preach, however, often
under the protection of local gentry. These preachers became known as
“Dissenters” or “Nonconformists.”

In 1688, the passing of the Act of Toleration allowed freedom of worship for
the Dissenters, who included Presbyterians and Quakers, meaning that (unlike
Catholics at the time) they were no longer forced to worship in secret. But they
did have to get licences for their places of worship, and they were banned from
holding public office and—relevant to this story—from going to English



universities. Nonconformist scholars and would-be ministers instead would go
to Scottish universities, notably Edinburgh, or Dutch ones, in particular Leiden.

The Bayes family were Nonconformists. They were also wealthy—Richard
Bayes, Thomas’s great-grandfather, got rich in the Sheffield steel industry,
making cutlery. Richard and his wife, Alice (née Chapman), had two sons. One,
Samuel, went into the ministry, as many scions of rich families did, whether
Nonconformist or Anglican. He was lucky enough to reach university age
during the Commonwealth period, and was allowed to study at Trinity College,
Cambridge, graduating in 1656. Samuel became a vicar in Northamptonshire,
despite his Nonconformist beliefs, although he was among the two thousand
clergy who refused to obey the Act of Uniformity in 1662 and was removed
from his parish. The other son, Joshua, Thomas’s grandfather, followed Richard
into the family business.

The Bayeses appear to have committed quite seriously to the Nonconformist
mission at this point. Joshua funded the building of a chapel in Sheffield, and his
sons-in-law—he had four daughters and three sons, although two daughters and
a son died in infancy—were the founder and minister of another one.

Joshua’s second son, also Joshua, was born in 1671. He studied philosophy
and divinity at a Dissenting academy in the north of England, which was forced
to move repeatedly because of government harassment and persecution of
Nonconformist academics. After that, he became a minister at various chapels in
London, first in Southwark and then near Farringdon. According to Bellhouse,
he was respected “both as a preacher and as a man of learning” by his flock.

He was also very much a classic Puritan family man, with a vast brood of
children. He married his wife, Anne (née Carpenter), in October 1700, although
the exact date is not known, likely because they were married in a
Nonconformist chapel. Birth, death, and marriage registries were kept by the
Church of England, while Nonconformist groups’ records were often “kept
secret, or not at all, for fear of religious discrimination.”

For the same reason, the birth dates of Joshua and Anne’s impressive tally of
seven children are not known. All seven survived to adulthood, which was
reasonably unusual at the time—about a third of English children born in the

early eighteenth century died before the age of five.* We know that Thomas, the



eldest, died in April 1761, aged fifty-nine, so was “with probability 0.8”2 born in
1701 (alternatively, early 1702). His siblings were, in order of birth, Mary, John,
Anne, Samuel, Rebecca, and Nathaniel; we know the years they died and how
old they were when they did (John died youngest, age thirty-eight, in 1743,
while Rebecca lived to eighty-two), but not their exact birth dates.

The family behaved as you'd expect a wealthy, educated family of the time to
behave. One son, John, went to Lincoln’s Inn and studied law, and was called to
the bar in 1739. Samuel and Nathaniel went into trades, like their grandfather
and great-grandfather—Samuel sold linen, while Nathaniel was a grocer. Mary
never married; Anne and Rebecca married well-to-do men of their social station,
a textile dealer and an attorney, respectively. And Thomas, of course, followed
his father into Nonconformist ministry.

As a boy, Thomas was probably educated by a friend of the family, John
Ward, later a professor of rhetoric at Gresham College, Cambridge, and a fellow
of the Royal Society. Thomas’s father helped pay for the printing of Ward’s no
doubt fascinating book 7he Lives of the Professors of Gresham College, and
Ward’s biographer says that he was “induced to undertake the education of a
certain number of the children of his friends” and opened a school in
Moorfields.% There is also a suggestion that he was educated as a boy by
Abraham de Moivre, one of the great pioneers of probability theory, who had

been forced to flee France for London and earn a living there as a tutor, although

that appears to just be speculation.z

Thomas was a clever young man: a letter from Ward written in 1720, when
Thomas would have been eighteen or nineteen, makes clear that Bayes could
read Greek and Latin fluently—the letter is, after all, 7z Latin—although Ward
had advice for how he could improve his Latin composition.

Despite his family’s wealth and connections, and his own brains, as a
Nonconformist Thomas was barred from the English universities. In 1719 he
went up to Edinburgh, where he appears to have studied under Colin
Drummond, professor of logic and metaphysics. The 1720 letter from Ward also
tells us that Bayes studied mathematics, to Ward’s satisfaction: “The order which
you follow in the rest of your studies I cannot but highly approve of. In



occupying yourself simultaneously with both mathematics and logic you will

more clearly and easily notice what and how much each of these excellent

instruments contributes to the directing of thought and sensation.”®

But the main reason Bayes was in Edinburgh was to study divinity and
prepare for his life as a minister. In 1720 he joined Divinity Hall, where records
show that as part of his work, he submitted analyses of verses from the book of
Matthew. The last is dated January 1722, so he must have stayed in Edinburgh at
least until then.

The next thing we know about his life is that he turned up in London some
time before 1728, when his name appears on a list of ministers submitted to a
committee of Presbyterians, Independents, and Baptists—a committee of which
Joshua, Thomas’s father, was a frequent member and occasional chairman.
Thomas at that point was an approved minister—he had the qualifications—but
not yet in place at a chapel. By 1732, he had—according to that year’s version of
the list—joined his father at the chapel in Leather Lane, near Farringdon. By
carly 1734, he had moved to Tunbridge Wells in Kent, to take up a ministry of
his own.

The nature of Bayes’s belief is not exactly known. We know he was a
Nonconformist, but that only narrows it down so far. But it does mean he
probably had some very unusual, even flatly heretical, beliefs for his time.

He wasn’t an Anglican. Nor was he a Catholic. The two doctrines are
different, but not all that different—they differ on what seem to the outsider
relatively small points. The Catholics believe salvation comes only through the
Church, whereas the Anglicans believe that having faith in Jesus Christ and
following his teachings get you to Heaven, even if you’ve never met a priest in
your life. Catholics believe that the Eucharist wafer and wine literally become
the body and blood of Christ in the Communion ceremony, whereas most
Anglicans think it is merely imbued with his Spirit. They all, though, believe in
the Holy Trinity—God the Father, God the Son, and God the Holy Spirit—and
that God is both one substance and three persons.

Some of the Nonconformists had very different beliefs. In particular, Arians
and Socinians denied the Trinity (and were viewed as heretics by mainstream
Christians as a result). Arians believed that God the Father was the supreme



God, and that Jesus, his son, was a lesser god who had always existed, even before
he physically arrived on Earth. By contrast, Socinians agreed that Jesus was a
lesser god, but believed he was brought into being only at the time of the
Nativity. Later, Unitarianism grew out of those two heresies. It denied the
Trinity too, but went further, saying that there is only one God, and that Jesus
was not divine.

These beliefs grew fairly widespread among Presbyterian congregations in the
eighteenth century. “The Presbyterians were really free thinkers,” says Bellhouse,
though not so free that these heretical beliefs didn’t lead to tensions: in 1719,
James Peirce and Joseph Hallett, two preachers, were expelled from Presbyterian

churches in Exeter, having been accused of the Arian heresy.-9-

Bayes’s first publication was a work of theology, Divine benevolence: Or, an
attempt to prove that the principal end of the divine providence and government is
the bappiness of bis creatures: being an answer to a Pampblet, entitled, Divine
rectitude; or, An Inquiry concerning the Moval Perfections of the Deity. With a
refutation of the notions therein advanced concerning beauty and order, the
Reason of Punishment, and the Necessity of a State of Trial antecedent to perfect
Happiness, published in 1731.1% His name was not on the author page
(although, to be fair, there would hardly have been room), but it is widely
accepted to be his work. His friend Richard Price refers to it in his own writings,
and names Bayes as the author.

Divine Benevolence was a work of theodicy: an attempt to explain why God, if
all-powerful and all-benevolent, allows evil in the world. As David Hume put i,
apparently quoting Epicurus: “Is he willing to prevent evil, but not able? then is
he impotent. Is he able, but not willing? then is he malevolent. Is he both able
and willing? whence then is evil?”1L

Bayes was responding to a tract by John Balguy, an Anglican theologian, who
argued that the suffering in the world was caused because God’s goodness was
about doing what is “right and fit,” which is not necessarily what we humans
enjoy.-l-z- Bayes, by contrast, believed that God is indeed benevolent, and wants us
to be happy. Since a lot of us aren’t happy, much of Bayes’s argument was spent



explaining why God might not try to make us happy, even though he can and
wants to. It was, apparently, quite controversial and widely read.
But Divine Benevolence doesn’t go into Bayes’s own faith. Bayes’s father,

Joshua, was a “moderate Calvinist who was tolerant of a variety of views,”13 but
Bellhouse argues that Thomas was probably an Arian or a Socinian, “halfway to
being a Unitarian.” “He was not your run-of-the-mill orthodox Christian,” says
Bellhouse. “He trained as a Presbyterian minister, but he was probably a
Socinian.”

The clue is the company he kept. He was friends with one James Foster,
another Dissenting minister, who was himself friends with the two Exeter
ministers who'd been expelled for Arianism. Foster had also written a pamphlet,
An Essay on Fundamentals in Relz;gz'on,-l-/*- arguing that the Trinity was not
essential to Christianity, which sounds dangerously heretical to me.

William Whiston, Isaac Newton’s successor as the Lucasian professor of
mathematics at Cambridge, was another associate of Bayes, and at one breakfast
the two men had together he asked Bayes whether the sermon at the local
Anglican church that weekend would include the Creed of Athanasius, which
lays out the doctrine of the Trinity. Whiston said he would leave the service if so,
and Bayes reassured him it would likely not.

Bayes would also, upon his death, leave £200 ($242) to John Hoyle and
Richard Price, two Nonconformist ministers in London, both of whom were
Arian in their faith and both of whose churches later became Unitarian. Price in
particular was a close friend—when Bayes died, it was Price who reworked and
published the famous essay that contained Bayes’ theorem.

Thomas Bayes lived in a high-society world. His peers tended to be
university-educated, often with doctorates of divinity, and many of them were
members of the nobility.-l-s- You can see this from his associations with well-
respected figures like Ward and Whiston. At Tunbridge Wells, Bayes continued
to mingle with well-known or well-connected people. The most important
appears to have been Philip Stanhope, the 2nd Earl Stanhope.

Tunbridge Wells in those days was “chiefly a tourist town.” ¢ It was reachable
within a day by carriage from London, and its most notable feature was a large



and much-admired spa, fed by a local spring. Stanhope, who became the earl at
the age of seven after the death of his father, and whose family home of
Chevening was just a few miles from Tunbridge, was a regular attendee there
from his early twenties. He was younger than Bayes, born in 1713.

The young Earl was an enthusiastic amateur mathematician. As a child, his
uncle and guardian had attempted to push him away from math and toward the
literary arts, but once he reached the age of majority he took it up with a will.
“He has read a good deal of Divinity, Metaphysicks, and Mathematicks,” wrote a
contemporary.-lz “He is always making mathematical scratches in his pocket-
book, so that one half the people took him for a conjuror, and the other half for
a fool,” wrote another. 23

Stanhope appears to have built a network of fellow scientists and
mathematicians. As well as Bayes, this included Robert Smith, a University of
Glasgow mathematician, whose works Stanhope had published posthumously;
Joseph Priestley, the chemist and discoverer of oxygen; and John Eames, a
theologian-scientist and friend of Isaac Newton. All of them, and many others
in Stanhope’s network, were Nonconformists of one kind or another, and most
of them were amateurs—gentleman scientists, hobbyists.

“He didn’t seem like a modern academic,” Bellhouse says of Bayes. “He was
more of an amateur, a virtuoso. He did it for his own pleasure rather than having
a research agenda.”

So Stanhope, and Bayes, clever men of considerable leisure and undemanding
jobs, made hobbies of mathematics. “What the rich did in the eighteenth
century was to get involved in science,” Bellhouse says. “It’s similar to rich
people nowadays getting involved in sports teams.”

The two men wrote to each other regularly; the correspondence was found
relatively recently among Stanhope’s effects. It appears that Stanhope met Bayes
in the 1730s, having either recently obtained a copy of Bayes’s paper An
Introduction to the Doctrine of Fluxions,” or being given it shortly after.

Fluxions was a defense of Newton’s calculus against an attack by the
philosopher George Berkeley. Bayes was a committed supporter of Newton.
“Some [Nonconformists] were hesitant to teach mathematics,” says Bellhouse,



“in case it led to Newtonian science, and from there to atheism. But a much
larger group among the Nonconformists said that it’s important to study
mathematics—you need to understand God’s universe.”2"

Berkeley argued that Newton had made, in essence, a divide-by-zero error:
that one of his terms in a key equation was simultaneously zero and non-zero,
and that his “doctrine of fluxions” was therefore inherently contradictory. Bayes,
in his response, tried to firm up Newton’s definitions more rigorously,
establishing exactly what various terms meant.

After that, Bayes did some work on infinite series and their relationship to
derivatives. A derivative is the rate of change of a slope on a graph. If you have a
graph of time (seconds) and distance (meters), the shape of the line tells you
something about the speed (meters per second). If the line is straight, your speed
is constant. If the line is curved, your speed is changing. A derivative measures
the slope of the curve at an exact point, so you are able to work out the speed for
any given distance or time. And you can go up a layer: divide your speed by your
time and find your acceleration, which is the second derivative of distance and
time.

*— DERWATIV

An inf inite series, meanwhile, is just a mathematical series that goes on

forever. If I say “x equals one plus two plus three plus four and so on,”- then
that’s an infinite series, and x is equal to infinity. But some infinite series do not

equal infinity. For instance, if I say “x equals a half plus a quarter plus an eighth

plus a sixteenth plus a thirty-second and so on,”Y then that’s an infinite series as

well, and x is equal to one.
Bayes showed that the derivative of a number y is equal to an infinite series of
y at time T minus half of y at time T + 1 plus a third of y at time T + 2 and so



on. It’s a neat little theorem, found in Stanhope’s papers long after both men
were dead (“Theorem mentioned to me at Tunbridge Wells by Mr Bayes Aug.

12. 1747,7% says a laconic note on a scrap of paper) and which, Bellhouse

believes, was not independently discovered until a quarter of a century later by

the French mathematician Joseph-Louis Lagrange.*>

It was around this time that Bayes grew interested in probability theory. But
before we get into that, we need to turn to the history of the mathematics of
chance, and what people were working on at that point.

PASCAL AND FERMAT

Traditionally, the story of the study of probability begins in French gambling
houses in the mid-seventeenth century. But we can start it earlier than that.

The Italian polymath Gerolamo Cardano had attempted to quantify the
maths of dice gambling in the sixteenth century. What, for instance, would the
odds be of rolling a six on four rolls of a die, or a double six on twenty-four rolls
of a pair of dice?

His working went like this. The probability of rolling a six is one in six, or
1/6, or about 17 percent. Normally, in probability, we don’t give a figure as a
percentage, but as a number between zero and one, which we call p. So the
probability of rolling a six is p = 0.17. (Actually, 0.1666666... but I’'m rounding
it off.)

Cardano, reasonably enough, assumed that if you roll the die four times, your
probability is four times as high: 4/6, or about 0.67. But if you stop and think
about it for a moment, that can’t be right, because it would imply that if you
rolled the die six times, your chance of getting a six would be one-sixth times six,
or one: that is, certainty. But obviously it’s possible to roll six times and have
none of the dice come up six.

What threw Cardano is that the average number of sixes you’ll see on four dice
is 0.67. But sometimes you’ll see three, sometimes you’ll see none. The odds of
seeing a six (or, separately, at least one six) are different.



In the case of the one die rolled four times, you'd get it badly wrong—the real
answer is about 0.52, not 0.67—but you'd still be right to bet, at even odds, on a
six coming up. If you used Cardano’s reasoning for the second question, though,
about how often youd see a double six on twenty-four rolls, it would lead you
seriously astray in a gambling house. His math would suggest that, since a
double six comes up one time in thirty-six (p = 0.03), then rolling the dice
twenty-four times would give you twenty-four times that probability, twenty-
four in thirty-six or two-thirds (p = 0.67, again).

This time, though, his reasonable but misguided thinking would put you on
the wrong side of the bet. The probability of seeing a double six in twenty-four
rolls is 0.49, slightly less than half. You'd lose money betting on it. What’s gone
wrong?

A century or so later, in 1654, Antoine Gombaud, a gambler and amateur
philosopher who called himself the Chevalier de Méré, was interested in the
same questions, for obvious professional reasons. He had noticed exactly what
we’ve just said: that betting that you’ll see at least one six in four rolls of a die will
make you money, whereas betting that you’ll see at least one double six in
twenty-four rolls of two dice will not.

Gombaud, through simple empirical observation, had got to a much more
realistic position than Cardano. But he was confused. Why were the two
outcomes different? After all, six is to four as thirty-six is to twenty-four. He
recruited a friend, the mathematician Pierre de Carcavi, but together they were
unable to work it out. So they asked a mutual friend, the great mathematician
Blaise Pascal.?

The solution to this problem isn’t actually that complicated. Cardano had
got it exactly backward: the idea is not to look at the chances that something
would happen by the number of goes you take, but to look at the chances it
wouldn’t happen.

In the case of the four rolls of a single die, your chance of not seeing a six on
any one throw is 5/6, or p = 0.83. If you roll it again, your chance of not seeing a
six on either throw is 0.83 times 0.83, or just shy of 0.7. Each time you roll the
die, you reduce the chance of not seeing a six by 17 percent.



If you roll the die four times, your chance of #ot seeing a six is 0.83 x 0.83 x
0.83 x 0.83 = 0.48. (To save time, we can say “0.83 to the power 4,” or “0.83 »
4.”) So your chance of seeing a six is 1 minus 0.48, or 0.52, or 52 percent. If you
bet at even odds one hundred times, you'd expect to win fifty-two times, and
youd be in profit.

But look what happens when we do it with the two dice, looking for a double
six. Your chance of seeing a double six on one roll of two dice is 1/36, or p =
0.03, as we said earlier. So your chance of not seeing a double six is 35/36 or
about 0.97.

If you roll your dice twenty-four times, your chance of 7ot seeing a double six
is 0.97 multiplied by itself twenty-four times (0.97 » 24). If you do that sum, you
end up with 0.51. So the chance of seeing a double six is 0.49. If you bet at even
odds, you'd expect to see it forty-nine times in a hundred, and you'd lose money.

(We should take a moment, here, to recognize the absolutely heroic amount
of gambling that Gombaud must have been doing in order to be able to tell that
his 52 percent bet was coming off, but his 49 percent bet wasn’t. Apparently, he
had deduced, correctly, that you need twenty-five rolls of the dice, not twenty-
four, for it to be a good bet. Gombaud was a man who enjoyed his dice-rolling.)

This led Gombaud to raise another question with Pascal. Imagine two people
are playing a game of chance—cards or dice. Their game is interrupted halfway
through, with one player in the lead. What’s the fairest way to divide the pot? It
seems wrong to simply split it down the middle, since one person is winning; but
it’s also unfair to give it all to the player in the lead, since they haven’t actually

won yet.

Pascal found this fascinating, and exchanged a series of letters®* discussing the
problem with his contemporary, Pierre de Fermat, of Last Theorem fame.

Again, this problem goes back a few centuries. The Italian monk Pacioli had a
go at solving something like it in 1494, in his work Summa de arithmetica,
geometrica, proportioni et proportz'onalz’tz‘z 2

He imagines that two players are playing a ball game in which you win ten

points for each goal, and the winner is the first person to get to sixty points.-I-I-I



One of the players has reached fifty points, and the other has reached twenty,
before the game is interrupted. How should the winnings be split?

Pacioli reasons that, since one player has scored five-sevenths of all the points
so far scored, that player should win five-sevenths of the pot.

Forty-five years later, the aforementioned Cardano—he whod got the math
backward on the dice problem, so could perhaps have shown a little more
humility—scofted that Pacioli’s solution was “absurd.” He imagined a slightly
different scenario, where two players play a game of first to ten. One has seven
points, and one has nine. In that situation, by Pacioli’s system, the first player
should get nearly half the pot—seven-sixteenths—and the second player only
slightly more, nine-sixteenths. But that seems obviously unfair, since one player
only needs one point to win, while the other needs three.

Cardano suggested a better route. “His major insight,” writes Prakash
Gorroochurn, “was that the division of stakes should depend on how many
rounds each player had yet to win, not how many rounds they had already
won.”%¢
But Cardano didn’t get all the way there. He suggests using the ratio of the
“progressions” of the two players’ still-required scores. The progression of a
number, in his jargon, is that number, plus that number minus one, plus that
number minus two, and so on down to one. So the progression of five would be
S+4+3+2+1=15.

In the example Cardano gave, the first player has three points still to win. The
progression of three is six (3 + 2 + 1 = 6). The second player has one point still to
win, and the progression of one is one (1 = 1). So, for Cardano, the pot should
be divided six parts to one in favor of the second player.

This is better than Pacioli’s system, or at least gets you closer to the true
answer. But it’s still wrong.

This is where Pascal and Fermat come into the picture. They realized the key
point: It’s not how close to the finish you are, or how far from the start you’ve
come, that matters. It’s the number of possible outcomes that remain, and how
many of those outcomes favor one player over the other.

Pascal, in a letter to Fermat, imagined a simple situation: two gamblers are
playing a game of first to three points. They have each bet thirty-two pistoles (a



gold coin used in currency at the time), so the total pot is sixty-four pistoles.

Let’s say it’s all square at two points each, and they suddenly have to end the
game. In that case, reasons Pascal, it’s easy enough to divide. You just split it in
half, thirty-two each.

But what if theyd had to end it one turn before, when one player had two
points and the other player had one? Pascal extends the reasoning. They would
have split it evenly had it gone to two rolls each, so the first player is sure of at
least half the pot—even if that player were to lose the next throw, they would
still have that. The other half is still a going concern. “Perhaps I will have them
and perhaps you will have them,” Pascal imagines the first player saying. “The
risk is equal. Therefore let us divide the thirty-two pistoles in half, and give the
thirty-two of which I am certain besides.” So the first player will take 32 + 16 =
48, or three-quarters of the pot.

Another way to look at it is to say that there are four possible ways the game
could have gone, had it continued. Player One could have won the first throw
and the second; they could have won the first throw but lost the second; they
could have lost the first throw but won the second; and they could have lost the
first throw and lost the second.

Only in the fourth scenario does Player Two win the pot. If Player One wins
the first throw, the second throw is irrelevant: Player One has made it to three
points. So half the outcomes are wins for Player One without even going to the
last throw. And even if they lose that first throw, they’re still in with a fifty-fifty
chance of winning.
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So the fair distribution of the pot, if the two players have to stop playing with
one player up two to one, is three to one, just as Pascal said.

You can expand this, and Pascal does. Imagine that Player One was winning
two—nil, not 2-1. If they win the next throw, they win. But if they lose, the
other player is back to 2-1. And we’ve just seen that, from that point, their
chance of winning the pot is 75 percent. In Pascal’s example, Player One would
say: “If I win, I shall gain all; that is sixty-four. If T lose, forty-eight will
legitimately belong to me. Therefore give me the forty-eight that are certain to
be mine, even if I lose, and let us divide the other sixteen in half, because there is
as much chance that you will gain them as that I will.”

So now Player One has a seven-eighths, or 87.5 percent, chance of winning,
so the fair division is that Player One takes fifty-six pistoles out of sixty-four.
Again, you can draw this as a diagram:

THeow | THRow 2 THRow 2

THRowS 2 AND 3
ON'T MATRER

D
PLAYER ONE
WINNING 2-0

But how about if Player One only has oze point, and Player Two zero? Then
you extend it one further back, said Pascal. If Player Two wins the first throw,
then it’s one-all, and an equal chance of winning. But if Player One wins the
first throw, then it’s two—nil, and we know the situation: she has seven-eighths
chance. Out of a possible sixteen outcomes, Player One wins in eleven, so she
should win eleven-sixteenths of sixty-four pistoles, or forty-four.

This is the great insight of probability theory: that we should look at the
possible outcomes from a given situation, not what has gone before. But
laboriously counting out the number of possible outcomes as we have above



takes quite a long time, so Pascal and Fermat worked on ways of making it
quicker.

You can work it out as a sum, but it’s complicated if you have large numbers
of rounds left to play. You need to work out the maximum possible number of
remaining throws—that is, the number Player One needs to win, plus the
number Player Two needs to win, minus one. If someone’s one—nil up in a first-
to-three game, that’s four. (The highest score the game could reach is 3-2, five
points in total.) Four remaining rounds means sixteen remaining possible
outcomes—that is, two times itself four times. And then you need to work out
which of the outcomes correlate to a win for Player One, which involves a lot of
superscript and Greek letters and would just tire us all out.

Luckily, Pascal came up with a cheat. He wasn’t the first to use what we now
call Pascal’s triangle—it was known in ancient China, where it is named after the
mathematician Yang Hui, and in second-century India. But Pascal was the first
to use it in problems of probability. It looks like this:
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It starts with 1 at the top, and fills out each layer below with a simple rule: on
every row, add the number above and to the left to the number above and to the
right. If there is no number in one of those places, treat it as zero.

Pascal realized that he could use the triangle to solve the problem of points.
Take our example. There are a maximum of four rounds left to play, so you
count down four rows from the top (counting the very top row, the solitary 1, as
row zero). Player One needs two more points to win, so take off the first two
numbers from the left. Add the remaining numbers together, divide them by the
total value of that row, and you get your chance of winning.



In this case, count down four rows from the 1, and you find you’re on a row
that goes: 1 4 6 4 1. Take the first two numbers away, and you’re left with 6 4 1,
which add up to 11. The whole row adds up to 16. That is, a 11/16, or a 68.75
percent chance: p = 0.6875.

Try it for the other examples we’ve looked at. If Player One has 2 points and
Player Two has 1, then there are a maximum of two possible goes left, and Player
One only needs to win one of them. So you count down two rows to the 12 1
row, you remove the 1, and you’re left with 3/4, or p = 0.75. It’s astonishingly
neat, and saves you lots of time.

It works for any event that has two equally likely outcomes, like coin-flipping
or games between equally matched opponents. For a given number of goes, X,
you look at row X (again, with the very top line being row zero). That gives you
the total number of possible outcomes. So if you flipped a coin seven times,
youd count down to row seven, the one starting 1 7 21, add those outcomes up,
and you find that it equals 128. So there are 128 possible outcomes.

Now, if you want to know what the possibility is of seeing exactly Y
outcomes, say heads, on those seven flips:

It’s possible that you’ll see no heads at all. But it requires every single coin
coming up tails. Of all the possible combinations of heads and tails that could
come up, only one—tails on every single coin—gives you seven heads and zero
tails.

There are seven combinations that give you one head and six tails. Of the
seven coins, one needs to come up heads, but it doesn’t matter which one. There
are twenty-one ways of getting two heads. (I won’t enumerate them all here; I’'m
afraid you’re going to have to trust me, or check.) And thirty-five of getting
three.

You see the pattern? 17 21 35—it’s row seven of the triangle.

So if you want to know the chance of getting exactly Y heads on X flips, you
count down X rows from row zero and look at the number that’s Y from the left
(again, counting the 1 at the left as 0). Then you divide that second number by
the first. Say you want to know the odds of getting exactly five heads, you look at
row seven—that’s the 1 7 21 35 35 21 7 1—and starting from zero, you count



five along. That’s the second twenty-one. So 21/128 ~ 0.164, or about a one-in-
six chance.

To find the chance of getting at least five heads, you just add the number of
possible ways of getting six heads or seven heads to the ways of getting five heads:
21 +7 + 1 = 29. Then you divide it by 128 as we did before. That’s what Pascal
was doing to work out the fairest way to split the pot.

Pascal’s triangle is only one way of working out the probability of seeing
some number of outcomes, although it’s a very neat way. In situations where
there are two possible outcomes, like flipping a coin, it’s called a “binomial
distribution.”

But the point is that when you’re trying to work out how likely something is,
what we need to talk about is the number of outcomes—the number of
outcomes that result in whatever it is you’re talking about, and the total number
of possible outcomes. This was, I think it’s fair to say, the first real formalization

of the idea of “probability.”

THE LAW OF LARGE NUMBERS

Pascal and Fermat’s letters were the beginning of the modern idea of probability
theory, although in its early days it was known as the doctrine of chances. You can
think of the underlying idea as being that the probability of some event is the
number of ways that event can occur, divided by the total number of things that
could occur.

Jacob Bernoulli, a Swiss mathematician, introduced the next stage. To use
one of the examples we just looked at, if you do flip seven coins 128 times, it’s
very unlikely that you’ll see zero heads once, one head seven times, two heads
twenty-one times, and so on.

But if you flipped the coins 128 million times, you'd very probably see zero
heads something like a million times, one head 7 million times, two heads 21
million times, etc. Or, in a more basic demonstration, if you flipped a fair coin
twice, you might well not see one head and one tail—in fact, 50 percent of the
time, you wouldn’t; you'd see two heads or two tails. But if you flipped it a



million times, you'd probably see somewhere around half of them come up
heads and half come up tails.

Bernoulli’s claim was that the more you flipped the coin, the closer, on
average, to the “true” probability your results would be.

You might reasonably say that this is pretty obvious. And also, so what? You
know you’ll see roughly half of the coin flips come up heads. You don’t need to
flip the coin a million times to prove it.

But so far, we’ve only been looking at the probability of known events in
games of chance—dice-rolling, coin-flipping. Things where we know (in theory,
at least) the probability of the basic components of the game in advance. It’s
axiomatic that a coin flip is a fifty-fifty shot, that when we roll the dice, we’ll see a
one once in every six throws.

Sometimes, though, we might wonder: Is the coin fair? Are the dice loaded?
When can we tell? Or maybe we aren’t playing dice at all; maybe we’re trying to
work out how the world actually is, how often things happen. We have to go
outside games, where everything is established in the rules, and go out into the
real world of messy chance and uncertainty.

Bernoulli lived in Switzerland in the seventeenth century, one of a family of
genius mathematicians. (It is important not to get confused between
“Bernoulli’s theorem,” which we are about to discuss, named for Jacob, and
“Bernoulli’s principle,” something completely other, named for his nephew
Daniel. There were also three Johanns, two Nicolauses, and a second Jacob
among the Bernoullis of the sixteenth and seventeenth centuries whose names
are blue on Wikipedia.)

What he was interested in was not just in fact games of chance. He was also
interested in balls in urns.

Imagine the following situation.” You are presented with a large urn. Inside
the urn are a number of black and white balls. But you don’t know the ratio of
the two colors. You draw some balls out, and you get some black ones and some
white ones. Say you draw five balls, and you get three black balls and two white
balls. Using that result, what can you say about the contents of the urn as a
whole?



Now we’re no longer talking about working out the probability of seeing
some result, given certain facts about the world. We’re talking about the exact
opposite: What is the probability of the world being a certain way, given the
results that we’re seeing? The two ideas are sampling probabilities—what can we
predict about a sample of something, given what we know about the whole?—
and inferential probabilitiee—what can we know about the whole, given a
sample we’ve taken?

I’m just going to stop here for a moment and really drill this home. This
distinction is crucial. It doesn’t sound like much, maybe, but it’s the whole
game. This is what modern statisticians—modern scientists—do all day. They
don’t sit around working out the probabilities of drawing a straight flush in
Texas Holdem. That’s a straightforward thing to work out, if you know how
many cards there are in the deck; any high school math student could do it. They
don’t worry about how likely it is you’ll roll five or more sixes on twenty dice.
You can do that with Pascal’s triangle in a few seconds. What they do is try to
establish what the data tells us about a hypothesis. If I give five hundred people a
COVID vaccine, and five hundred people a placebo, and then ten people get
COVID in the placebo group and only one in the vaccine group, what does that
tell us? How sure can we be that the vaccine works?

This is what Bernoulli was trying to do. And his solution was brilliant and
insightful, and—at least according to Aubrey Clayton, the author of Bernoulli’s
Fallacy: Statistical Illogic and the Crisis of Modern Science—wrong. For Clayton,
and the school of statistical thinking he represents, Bernoulli also, sadly and
inadvertently, set statistical thinking down the wrong path for the next three
centuries. Whether Clayton is right or not is the subject of more than a century
of bitter academic dispute, which we will discuss elsewhere in this book. But
first, let’s look at what Bernoulli did, and why.

Bernoulli wanted to know how confident we could be in the contents of an

urn after we had drawn some number of balls. Say you’ve got an urn with balls

in it. Each time you draw a ball, you put it back and shake the urn up again.-z-Ei

(That’s important, so that the chance of drawing a black or a white ball remains
the same throughout.) The balls are well mixed and equal in size and weight;
you’ve got no way of telling whether a ball is white or black before you pick it,



and there’s no reason for black or white balls to tend to be higher or lower in the
urn. If you draw X balls out of the urn, and Y of them are white, what can you
say about the ratio of white balls to black in the urn?

The larger your sample, the more likely it is to be close to the true ratio. If the
real ratio in the urn is that three out of every five balls are white, and you draw
five balls, it’s not that likely that you’ll see exactly three whites and two blacks.
But if you draw fifty balls, you might not see exactly thirty and twenty, but it’s
much more likely that you’ll see something close to it. Bernoulli himself

recognized that it was something that “even the stupidest man knows by some
instinct of nature per se and by no previous instruction.”?. (And, indeed, in
1951 it was shown that even quite young children grasp this concept
intuitively.)?"

But Bernoulli wanted to take it further than that. His insight was that there
are three components to this question: how big a sample you take, how close to
the true answer you need to be, and how confident in your answer you need to
be. He realized that you can never be z7u#/y certain of the actual ratio. What you
can have instead, he said, is “moral certainty”—that is, a given degree of
confidence in a given spread of results.

So you might want your sample to give you a result that is 99 percent likely to
be within 1 percent of the true value. Or you might want it to be 70 percent
likely to be within 10 percent of the true value. Bernoulli proved that, for either
of those, or any other combination, there is a number of balls that you can draw
out of the urn that will give you that level of confidence. He also showed that
there is no point at which either you reach certainty or that increasing your
sample ceases to give you greater confidence.

To express it as a mathematical theorem (these are not Bernoulli’s own words,
but a modern rephrasing): “[We] can always specity the number of observations
n such that, for any probability we wish, the absolute difference between the
sample proportion m/n (where m is the number of positive cases) and the true
proportion p is less than or equal to some number € of our choosing.”-3-1-

Note that there are three moving parts and adjusting any one of them means
changing at least one of the others. So if you've drawn a sample that’s large



enough for you to be 90 percent sure that it’s within 10 percent of the true
answer, but you want to be 99 percent sure, you either have to adjust your
spread—make it wider than 10 percent—or you have to take a larger sample. (As
Aubrey Clayton points out, it’s like the project-management mantra “Fast,
good, or cheap. Pick two.” In this case, it’s “Precise estimates, high certainty, or
small samples. Pick two.”)>2

Having proved that this was the case, Bernoulli wanted to put numbers on it.
Exactly what level of confidence—what degree of “moral certainty,” in his words
—could you achieve with a given sample size? And he managed it: if the true
number of balls in the urn was 3,000 white and 2,000 black, Bernoulli showed
that with a sample size of 25,500, you would get a result that lies within 2
percent of the answer 999 times out of a thousand.

(Which is an inconveniently large sample size for someone working in early
modern Europe without the benefit of a computer or ready access to psych
undergraduates willing to take part in social science research for beer money. It
was, as Stephen Stigler points out in his The History of Statistics, larger than the
contemporary population of Basel, Switzerland, where Bernoulli lived, and
“more than astronomical: for all practical purposes it was infinite.” The abrupt
ending of Ars Conjectands after that line, says Stigler, suggests that “Bernoulli
literally quit when he saw the number 25,500, mustering strength only to add
one further sentence.”)?3

With more modern methods it would be possible to achieve Bernoulli’s
desired degree of certainty with a smaller sample size, but nonetheless, by today’s
standards, he was being extremely demanding of himself. We’ll talk more about
p-values and confidence intervals a bit later, but Bernoulli’s preferred level of
moral certainty—landing within a given distance of the target 999 times in every
1,000—is equivalent to a false positive rate of 0.001. Most social science, at least,
asks for a false positive rate of 0.05—fifty times less stringent—although in some
other sciences, notably physics, a higher standard is used.

What Bernoulli recognized, though, was that this wasn’t only relevant to
parlor games and gambling houses. With Bernoulli, we deal with probabilities all
the time—he gives examples of trying to establish who committed a murder, or
whether a document is fraudulent. This was all part of Bernoulli’s wider aim: to



create a philosophically robust way of using empirical evidence. For two
thousand years, philosophers had argued whether the true route to
understanding was with one’s reason or with the senses. Plato argued that there
was a true underlying reality to the universe—what he called Forms—Dbut that

our senses were untrustworthy and could never give us certain knowledge}-/f
Plato said, therefore, that the route to understanding was by reasoning, not
experiment.

Bernoulli was a physicist and experimentalist. He accepted that we could
never know anything with absolute certainty. But, he said, that doesn’t have to
mean that all things are equally likely. If we roll a die one hundred times and it
comes up six every time, we can’t say with absolute certainty that it’s loaded. But
we can say it’s very likely that it is. In a foreshadowing of things we will discuss
later—the idea of probability, and specifically Bayes’ theorem, as an extension of
formal logic—Bernoulli thought that we could talk about certainty as a number:
1 for complete certainty, 0 for complete impossibility}-s- And that meant that
you could have degrees of certainty, and improve that certainty by experiment.

The trouble, for Clayton at least, was that Bernoulli was still talking about
sampling probabilities, not inferential probabilities. Or rather—he didn’t draw a
distinction between the two. Bernoulli had successtully shown that the ratio of
white balls to black balls in the sample will probably be close to the true ratio in
the urn as a whole (exactly how close probably depending on the sample size).
What he assumed was that this therefore meant that it was equally likely that the
true ratio of white balls to black balls in the urn would be close to the ratio in the
sample. But in that he was wrong; the probabilities can be very different indeed.
It was not until the Reverend Thomas Bayes that it was understood how
Bernoulli was wrong.

DE MOIVRE ON THE NORMAL DISTRIBUTION

Abraham de Moivre was a French Protestant who fled persecution by the
Catholic authorities in his hometown of Vitry after being imprisoned for two



years.-3--6- In 1688, at the age of twenty-one, he arrived in London, where he read
Newton and became a tutor, learning mathematics as he did so. He took
Bernoulli’s ideas one stage further.

Think back to Fermat and Pascal working out how you ought to divide a pot
if a game was ended early. They worked it out by looking at how likely each
player was to win, given where the game stood when they ended it. And that
came down to how many of the remaining outcomes led to a win for Player A as
opposed to Player B.

What they were discussing was what’s now known as a binomial distribution.
If you flip a coin, it can come up either heads or tails. If you flip a coin twice, it
will come up either heads then heads, heads then tails, tails then heads, or tails
then tails. So there’s only one way of getting two heads or two tails, but two
ways of getting one heads and one tails. You can write the probability out:
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That’s the distribution of outcomes for two coin flips. (Or any other event
with two equally likely outcomes.) For four coins:
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(You might notice the Pascal’s triangle numbers in there again!) And as a

graph:
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You can calculate the probability of getting any given number of heads (x)
from a given number of coin flips (N) with an equation that I won’t write here
(use an online calculator, there are loads), but that starts by finding the factorials
of the number of throws, the number of heads you want, and the number of
throws minus the number of heads.

If you’ve not heard the term, a factorial of a number equals that number
multiplied by that number minus one, multiplied by that number minus two,
and so on, down to one. So the factorial of fiveis 5 x 4 x 3 x 2 x 1 = 120. Doing
that for large numbers is, in technical terms, a gigantic pain in the arse. (They get
bigger extremely quickly. The factorial of six is 720. The factorial of ten is
3,628,800.)

And you’re often not just interested in the chance of getting exactly x heads.
If we imagine a gambling situation again, and someone says, “I'll bet you £50 to



£10 that you won’t get sixty or more heads out of a hundred coin flips,” is that a
good bet? Well, using the binomial distribution calculation, you'd have to work
out the factorials of sixty, forty, and one hundred, then plug that into the
equation. Then you'd have to do it again, except with sixty-one and thirty-nine.
And again with sixty-two and thirty-eight. And so on. For ages. Bernoulli
actually did this stuff, which may be why his book took twenty years to write
and he never actually finished it.

Of course, once someone’s worked out the factorial of, say, 253—which is
507 digits long and ends with 62, apparently—they can write it down, and
everyone else can use it without having to work it out again. But even taking that
into account, it’s a long and boring process.

What de Moivre noticed was the shape of the curve.3Z Look at the two graphs
above: they both have a bulge in the middle and flattened edges. But in the N = 4
graph it’s smoother and more noticeable.

If you do a larger number of coin flips, the curve becomes clearer still. For N
=12:
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What de Moivre thought was that, instead of slogging through the equations
to work out the odds of seeing sixty heads on a hundred coins, you could work
out the mathematical expression for the curve, and then use the shape of the
curve to get the probability of any outcome. The curve is what we now call the
“normal distribution” or the “bell curve” (although statisticians I've spoken to
dislike that latter term, because it doesn’t actually look much like a bell).



IN CASE YOU NEED A REFRESHER ON WHAT STANDARD
DEVIATIONS ARE

We would now talk about what de Moivre was describing in terms of “means”
and “standard deviations,” a term that was not coined for another century and
a half. | imagine most readers will know what means are (yer bog-standard
average), but “standard deviations” is one of those terms that get thrown
around a lot by proper mathematicians as though we'll all automatically know
what it means, and | suspect most of us don't. The standard deviation is a
measure of how spread out your data is around the mean.

Imagine you have three kids and you want to know how tall they are, on
average. You measure them all, add it up, divide by three, and you get 160 cm.
That’s your mean, your average.

OK, fine, except there are lots of ways that you could get 160 cm. It could
be that every kid is exactly 160 cm tall. Or that one is 157 cm, one is 160 cm,
and one is 163 cm. Or it could be that two are little 130-cm-tall six-year-olds
and one is 2.2 meters tall and plays college basketball. Or an infinite number
of other combinations.

The key difference is how much they vary from the mean: the variance.
Once you have the variance, you can easily work out the standard deviation
by finding the square root of that variance.

You work out the variance by taking each child’'s height and subtracting
your mean (in this case, 160 cm) from it. Then you square that number—that
is, multiply it by itself. (If you don't do that, some of the numbers will be
negative.) Then you take the average of those numbers.

Let’s look at the example where one child is 157 cm, one is 160 cm, and
one is 163 cm. Subtracting your mean from each of those gets you—3 cm, 0
cm, and 3 cm. Square them and you get 9 cm, 0 cm, and 9 cm. The average is

6 cm,"Y so the variance is 6. The square root of 6 is roughly 2.4, so that's your
standard deviation.

In the case of the basketball player and the eight-year-olds, subtracting
the mean from their heights gives you —30 cm, =30 cm, and 60 cm. The
squares of those are 900, 900, and 3,600; the average of those is 1,800, so
that’s your variance. The square root of 1,800 is 42.4.

Once you've got your standard deviation, you can start talking about how
far each value is from the mean in terms of standard deviation (which is
usually written as SD, or with the Greek letter sigma, o).

Take the eight-year-olds-and-the-basketball-player example. The SD is
42.4. The two eight-year-olds are 30 cm from the mean, so they're 30/42.4 =
0.7SD below the mean. The basketball player is 60 cm from the mean, so he’s
1.4SD above the mean.



What's interesting here is that with normally distributed data and a
sufficiently large sample, you can reliably predict what percentage of results
will fall within a given distance of the mean, as measured in SD. In general, 68
percent of all values will be within 1SD of the mean—so if you’re 1SD above
the mean in height, then you're taller than about 84 percent of the population.
Meanwhile, 95 percent of the population will be within 2SD, and 99.7 percent
will fall within 3.
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De Moivre was able to show that, by working out the shape of the curve of
the normal distribution (although it wasn’t at that time called the normal
distribution), you could get a quick approximation of the chance of seeing any
given result. His methods said that 68.2688 percent of results fall within 1SD of
the mean; the true answer is 68.2689 percent. For 2SD, his answer was 95.428
percent chance, compared to a real answer of 95.45 percent. For 3SD, it’s 99.874
percent versus 99.73 percent.2® (They also weren’t called standard deviations,
but he did use the idea and recognize that it was the scale by which deviations
from the mean should be judged.)

So if you want to know how likely you are to see some result a given distance
from the mean, what you need to do is work out the standard deviation of your
data, and plug it into de Moivre’s curve-working-out equation. You won’t have
to spend several days working out the factorial of 3,600.

What de Moivre also realized, which was an extension of what Bernoulli had
been thinking about, was that the accuracy of your data—the size of your
standard deviation—depends on how many samples you take. Bernoulli had



spent twenty years tediously working out the required sample size for a single
example—being 999 out of 1,000 sure that your results will fall within 2 percent
of the true outcome. De Moivre had shown how to do it for any result, with
impressive if not perfect accuracy—and where Bernoulli had simply shown that
larger samples dzd give more accurate results, de Moivre took it a step further
and quantified it. He showed that the accuracy of your estimate grew in
proportion to the square root of the sample size.

But still, de Moivre was answering the same question as Bernoulli. That is:
How likely am I to see this data, given a certain hypothesis? For instance, to take
us back to the imagined bet a few paragraphs ago, how likely am I to see sixty or
more heads out of one hundred coin flips? (The answer is: not very. Only about
2.8 percent of the time, in fact. That £50-to-£10 bet would be dreadful, and you
shouldn’t take it.)

What neither Bernoulli nor de Moivre were able to answer was what came to
be known as inverse probability, although it’s really the heart of what we want
probability to do. What we want, or at least what science wants, out of statistics,
is to answer: Given the results I've seen, what can I say about my hypothesis?

SIMPSON AND BAYES

Bernoulli and de Moivre and the rest were all perfectly well known to Bayes and
his circle of well-to-do amateur mathematicians. “I think he and [Lord]
Stanhope were studying the 1733 edition of de Moivre’s A Doctrine of Chances,”
David Bellhouse, Bayes’s biographer, told me. “I think it was studying that book
which got Bayes interested in probability.” That was probably around 1735,
when Bayes was in his mid-thirties.

At the same time, another English Thomas, Thomas Simpson, was working
on similar problems to de Moivre. Simpson was the son of a LeicestershireY.
weaver, and a weaver himself, who taught himself mathematics—apparently a
relatively common occurrence; about half the members of the Spitalfields
Mathematical Society, which Simpson would later join, were weavers.>2 He
seems to have had an interesting life: according to Stigler, at the age of nineteen



he married a fifty-year-old widowed mother of two (although other biographies

say that he married his landlady and they had two children of their own*?), and

the family had to flee from Nuneaton to Derby after “he or his assistant had

frightened a girl by dressing up as a devil during an astrology session,” L

apparently after a solar eclipse. By 1736 they were living in London.

The work of Simpson’s that is most relevant to us here came in 1755. It was a
treatise on measurement error in astronomy: If six astronomers all record the
passage of a planet past a certain point, and all have slightly different results,

what should we record as its true position?fk-z-

Simpson’s answer was that we ought to use the mean of the observations,
instead of (as some at the time suggested) the “Aristotelian mean,” the largest
result plus the smallest divided by two. He showed this, essentially, by
demonstrating a special case of the law of large numbers.

I’'m not going to go into the detail of it here, partly because it covers a lot of
the same ground as standard deviation and so on, but it’s notable for two key
points. The first is that Simpson is explicitly talking about znference, rather than
sampling. That is: “What can we say about the hypothesis, given the data?”
rather than “How likely are we to see this data, given a hypothesis?” Simpson is
trying to estimate the real position of the planet, not say how likely we are to see
the errors we do, given a particular position. He could only do this by making
some highly simplifying assumptions about the errors, but nonetheless, it’s a
genuine attempt to turn statistics into a useful inferential tool instead of a
novelty (or a way of winning in casinos). He even gives what Stigler calls “the
earliest statistical advice from mathematician to experimental scientist of which I
am aware”:*> that we should use the mean of as many observations as possible.

The second key point is that one of the reviewers of Simpson’s paper was the
Reverend Thomas Bayes of Tunbridge Wells. “By then he was fairly mature in
his use of probability,” says Bellhouse, “and he gave some very insightful
comments.” The key one is what we would now call measurement error. “Bayes’s
major comment was to the effect that yeah, the math is right, but what if the
measuring instrument is biased?” says Bellhouse. “Then the mean won’t help
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In Bayes’s words, from a letter he wrote to the physicist John Canton
(another weaver’s son):

Now that the errors arising from the imperfection of the instruments &
the organs of sense shou'd be reduced to nothing or next to nothing only
by multiplying the number of observations seems to me extremely
incredible. On the contrary the more observations you make with an
imperfect instrument the more certain it seems to be that the error in your
conclusion will be proportional to the imperfection of the instrument
made use of. For were it otherwise there would be little or no advantage in
making your observations with a very accurate instrument rather than
with a more ordinary one, in those cases where the observation cou’d be

very often repeated: & yet this I think is what no one will pretend to say.-4-5-

Say you’re trying to time how long it takes someone to run a mile, but the
watches you use are all slightly fast so that the second hand goes around every
fifty-nine seconds instead of every sixty; then taking the mean won’t help, no
matter how many watches you use—you’ll just get ever more confident about
your wrong answer.

Simpson appears to have taken this point, and included in a later version of
his work a line that said his thinking only worked if “there is nothing in the
construction, or position of the instrument whereby the errors are constantly
made to tend the same way, but that the respective chances for their happening
in excess, or in defect, are either accurately, or nearly, the same.”*¢

We know, then, that Bayes was thinking about probability, and specifically
inferential or inverse probability—remember, that’s “How likely is it that a
hypothesis is true, given this data?”—as opposed to sampling probability—
which asks, “How likely am I to see this data, given this hypothesis?”—at least by
1755, and if Bellhouse is right, he’d been interested in the subject since reading
de Moivre’s book in the mid-1730s.



BAYES'S NOT-IN-FACT-A-BILLIARD-TABLE

One of Bayes’s great contributions to probability theory was not mathematical,
but philosophical. So far, we’ve been talking about probability as though it’s all a
real thing, out there in the world. The probability of a coin turning up heads 7s
0.5. The probability of seeing sixty or more heads in one hundred coin flips 7s
about 2.8 percent. We say these things as though they’re facts about the world.
Bayes turned that around.

For Bayes—to quote Professor Sir David Spiegelhalter, the former president
of the Royal Statistical Society, the former Winton Professor of the Public
Understanding of Risk at Cambridge University, and surely the owner of the
single most authoritative-sounding set of titles in all of statistical science—
probability “is an expression of our lack of knowledge about the world.”4Z

That is, for Bayes, probability is subjective. 1’s a statement about our
ignorance and our best guesses of the truth. It’s not a property of the world
around us, but of our understanding of the world. If you flip a coin, and hide
the result from me, and say, “What are the chances that the coin landed heads?” I
might answer “fifty-fifty” if I trusted that you were doing it honestly. But if I
knew you were a stage magician, or the owner of the world’s largest collection of
double-headed coins, I might make a different estimate.

What Bayes showed in his paper “An Essay towards Solving a Problem in the
Doctrine of Chances” was that in order to make inferential probability work—
which means, remember, asking, “What are the chances that my hypothesis is
true, given the data?” rather than “What are the chances that I would see this
data, given my hypothesis?”—you must take into account how likely you thought
the hypothesis was in the first place. You must take your subjective beliefs into
account.

To make his point, Bayes used a metaphor of a table, upon which balls are
rolled. (Note that this is 7oz a billiard table. “Later writers... have promoted it to
a billiard table,” sniffs Stigler, “but the Reverend Bayes was neither so specific

nor so frivolous.”8 Spiegelhalter does call it a billiard table, but adds, “Being a

Presbyterian minister, Bayes just called it a table.”®?) The table is hidden from



your view, and a white ball is rolled on it in such a way that its final position is
entirely random: “There shall be the same probability that it rests upon any one
equal part of the plane as another.”>?

When the white ball comes to a rest, it is removed, and a line is drawn across
the table where it was. You are not told where the line is. Then a number of red
balls are also rolled onto the table. All you are told is how many of the balls lie to
the left of the line, and how many to the right. You have to estimate where the
line is.

Imagine that five balls are thrown, and you’re told that two of them landed to
the left of the line and three of them landed to the right.

Where do you think the line ought to be? Bayes said that the most likely place
is three-sevenths of the way up the table from the left.>t

Intuitively you might think that it should be two-fifths. After all, you’ve just
rolled five balls, and two of them ended up on one side and three on the other.
But Bayes said that you must take into account the prior probability—your best
guess of what the situation was, before you got any information.

But do you have a best guess? You don’t know anything, do you? The line
could be anywhere. But that in itself is a form of prior information: it is equally
likely (from your subjective point of view) that the line is right up against the
left-hand cushion, or right up against the right-hand cushion, or anywhere in
between.

You could draw a graph of the distribution of probability—how likely the

line is to be in a given place on the table—before you rolled another ball. It

would look like this:
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If you have absolutely zero idea where the line is, then the probability of the
next ball landing to the left of it is 0.5—50 percent. After all, the line could be
far to the right, so the ball would definitely land left; it could be far to the left, so
the ball would definitely land right; it could be in the middle, so it would be
fifty-fifty; or it could be anywhere else, with corresponding probabilities. The
average position is exactly in the middle.

Essentially, Bayes’s big insight was that you must add any new information
you get to the information you already have. In this case, you don’t have very
much information. But it is something.

What that means is that instead of just saying, “The most likely position of
the line is two-fifths of the way along the table,” you have to take account of
your prior. So Bayes said that the equation for working out the probability here
is not “the number of red balls on the left divided by the total number of red
balls”—2/5—but the number of red balls on the left of the line PLUS ONE,
divided by the total number of red balls PLUS TWO. It is, says Spiegelhalter,
“equivalent to having already thrown two ‘imaginary’ red balls, and one having
landed each side of the dashed line.”>?

That might seem odd, but it makes sense when you think of what it would
look like if all the balls had landed on one side or the other. If all five had landed
left, and we didn’t include those extra imaginary balls, then wed say the
probability of the next ball landing left was 5/5, or 1, or complete certainty. But
that’s silly—obviously you don’t £now for sure that the next ball isn’t going to be
to the right. With Bayes’s extra balls, your estimate would be 6/7. And no matter



how many balls land on one side, you never end up with absolute certainty—if a
million balls land to the left, then your estimate of the next ball’s probability of
landing right would be 1/1,000,002. Each piece of new information pushes you
closer to certainty, but you never quite get there.

What Bayes also did was talk about probability distributions. We know the
most likely place where the line would be, but it’s almost as likely to be a little bit
either side of it, and a bit less likely to be farther away. And it’s possible (but very
unlikely) that it’s way to the right, but three balls happened to squeeze into the
space next to the cushion. You draw that probability distribution as a graph.

We saw what a uniform probability looks like a few paragraphs ago—a flat
line across the graph. After the five balls have been rolled, you can redraw the
graph, using some fairly complicated mathematics, and it would look like this:
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This is your posterior probability distribution—what your assessment of the
likely position of the line looks like now that your prior has been updated with
the new information.

But if you start going out to get more information, your posteriory-l- becomes
your new prior. If you were to roll another five balls, you’d go through the exact
same process. And, most likely, your new distribution would be even narrower,
and more precisely centred around the true value.

This exact system is what we do in all the examples we’ve looked at so far:
when we use a medical screening test to look for cancer, or a COVID test to test
for COVID, or evidence to convict a suspect. We’re taking prior information
(how common is the cancer?) and adding new information (a positive test with a
certain level of sensitivity and specificity) and creating a new posterior
distribution.



And, crucially, it’s all subjective. That doesn’t mean it’s random, or that any
prior probability is equally valid—if your prior is that you’ll roll a six on a six-
sided die roughly one-sixth of the time, and mine is that you’ll do it five-sixths of
the time, you’ll probably be closer to the truth than I am, since most dice are fair.
You can have better and worse reasons to believe something. But it is subjective.
(Of course, if the die s fair and we roll it a few hundred times, and if I am a good
Bayesian and update my beliefs appropriately in the light of new evidence, we’ll
see the six come up about one time in six, and I'll rapidly adjust my probability
to something very close to yours.)

“An Essay towards Solving a Problem...” was most likely written in the period
after Simpson’s 1755 article. It appears to have sunk almost without trace—it
was published after Bayes’s death, but was apparently unknown to Pierre-Simon
Laplace, the French mathematician who independently arrived at similar
conclusions in 1774. Stigler argues that Bayes himself didn’t think all that much
of it—he wrote a will in 1760, four months before he died, suggesting that he
knew he might not have long to live, and that he “would have had the

opportunity to communicate his work to the Royal Society had he wished to do

50,723 since he was by then a fellow. But he didn’t. Instead, it ended up with his

friend Richard Price, to whom Bayes left £100 in his will, along with his papers,
including “An Essay towards Solving a Problem...” (Bayes didn’t seem to know
exactly where Price was: his will directed that the money and papers go to

>4

“Richard Price now I suppose preacher at Newington Green.”)>* But Price, it

appears, had a better sense of the importance of the work.

PRICE, THE FIRST BAYESIAN, WANTS TO SAVE
GOD FROM HUME

Richard Price (1723-1791) was another Nonconformist minister, who (as Bayes
rightly guessed) was working at a chapel in Newington Green, North East
London. The chapel is now rather famous—it is the oldest Nonconformist
church in London still operating, and counted among its congregants Mary



Wollstonecraft, author of 4 Vindication of the Rights of Woman and the mother
of Mary Shelley, the author of Frankenstein.

At the time, Price was a much more well-known man than his older friend
Bayes. He was well connected with radical thinkers: notably, he was friends with
several of the Founding Fathers of the American Revolution. He exchanged
letters with Thomas Jefferson>2 and Benjamin Franklin,”® both of whom visited
him in Newington Green, as did John Adams, the second president of the
United States. Franklin in particular appears to have been a close friend. Price
was a famous supporter of the revolution: his pamphlet Observations on the
Nature of Civil Liberty, the Principles of Government, and the Justice and Policy
of the War with America was published in February 1776, months before the
Declaration of Independence; it sold out in three days and had been reprinted
eleven times by May. According to a biography of Price, “the encouragement
derived from this book had no inconsiderable share in determining the
Americans to declare their independence.”-SZ

Price was also friends with the philosophers David Hume (of whom more
later) and Adam Smith, and with William Pitt the Elder, the politician. In all he
seems to have been a pretty cool and impressive guy with cool and impressive
friends, famous across England and America, and it is strange how little known
his name is now.

Price is important to this story as the man who brought Bayes’s paper to
wider attention: he showed the paper to the physicist John Canton in 1761, after
Bayes’s death, and had it published in the Phzlosophical Transactions of the Royal
Society two years later.

Part of the reason it took so long for him to publish it was that Price didn’t
just go over it for typos and misplaced commas; he was more than, in the words
of the historian of statistics Stephen Stigler, “a loyal secretary.” Price had visions
of his own for the work: while Bayes wrote the first half of the paper, the second
half, containing all the possible practical applications of the theorem, was all
Price.>8 Bayes had no interest in applied statistics: his work, in this paper and all
others, was “all theory with not a hint of application.”-5-9- But Price was—to

quote Stigler again—“the first Bayesian.”-é-p-



Price imagined a person “just brought forth into this world,” seeing the sun
for the first time: “after losing it the first night he would be entirely ignorant
whether he should ever see it again,” wrote Price in his appendix to Bayes’s work.
Then the next morning, it rises again, and again. After » mornings, how
confident should you be that the sun will rise again on morning 7 + 12

He argues that you can apply Bayes’ theorem to the problem. Having seen the
sun once, you have no idea if it’s a one-off or a repeated event: its appearance
simply shows that it is possible, but it could happen on one morning in every
quadrillion, or every morning, or at any other rate. You should, as we would call
it nowadays, have a uniform probability distribution over all the possibilities.

Once you see it return once, Price reasoned, you should be sure that “there
was an odds of 3 to 1 for some probability of this.” It’s just like Bayes’s ball table,
except instead of working out the odds of the ball landing to one side or other of
the line, you’re working out the odds of the sun coming up. Once you see it
return a million times, “there would be odds of the millionth power of 2, to one,
that it was likely that it would return again at the end of the usual interval.” But
no amount of evidence “would be sufficient to produce absolute, or physical
certainty.”-G--l-

Which is all good fun, and in keeping with the steady progression we’ve been
seeing, of Bernoulli trying to work out what degree of “moral certainty” you
could achieve with a given sample size, and of Simpson and de Moivre trying to
turn the idea of sampling probability, the chance of seeing the data we’ve seen if
we assume a hypothesis is true, into inferential probability, the chance that a
hypothesis is true given the data we’ve seen.

But what’s interesting is what motivated Price to do that. At the time, there
was a divide among the Nonconformist ministries, between those who thought
mathematics would lead to godlessness and those who thought it would help us
understand God’s universe. Price was of the latter persuasion, and so, Stigler and
Bellhouse believe, he wanted to use Bayes’ theorem to save God from David
Hume.

Hume, in his 1748 essay “Of Miracles,” argued that no amount of testimony
should ever convince someone that a miracle, a violation of natural law, took
place: he never actually said “extraordinary claims require extraordinary



evidence,” but that’s the gist of it. “[No] testimony is sufficient to establish a
miracle,” wrote Hume, “unless the testimony be of such a kind, that its
falsehood would be more miraculous, than the fact, which it endeavours to
establish.” If someone were to say that he had seen the dead restored to life,
Hume continues, “I immediately consider with myself, whether it be more
probable, that this person should either deceive or be deceived, or that the fact,

which he relates, should really have happened.”—é--z-

This was pretty shocking stuff to a Christian nation, who firmly believed in
at least one person coming back from the dead in the New Testament, and
Hume’s essay was met with a hostile reaction. But the point is one of
probability: we all have a lifetime’s experience of the laws of nature not being
broken, and we also have a lifetime’s experience of people saying things that are
not true. If someone says, “I saw a dead man come back to life,” most of us
would consider it more likely that that someone is wrong, or lying, than that
they actually saw a dead man come back to life. So, says Hume, we should ignore
that testimony as irrelevant.

But Price, newly armed with Bayes’ theorem, wanted to say that rare events
do happen, and that even if you’ve seen the sun rise or the tide come in a million
times, you can never be physically certain, in his phrase, that it’ll do so the next
time. In his appendix to Bayes’s work he wrote a long argument about a die with
an unknown but very large number of sides, which comes up showing a certain
face a certain number of times over a million throws, and what you could

conclude about that. He used the exact same numbers in a later essay, explicitly

attacking Hume’s “Of Miracles.”®3

In the later, Bayes-derived work, Price imagined this die, with a huge but
unknown number of faces, perhaps a million or more. Some faces are marked,
let’s say with an X, and some aren’t, but you have no idea what the ratio is and
you're trying to work it out. You roll the die a million times. On all 1 million
rolls, you see an X.

This is exactly analogous to Bayes’s not-in-fact-a-billiard-table we discussed in
the last section. Instead of “Has the ball fallen to the left or the right of the line?”
it’s “Has the die shown an X or not?” but you can do the same math precisely.
And if you roll X 1 million times in a row—and, importantly, you went into the



situation with no knowledge of the likelihood of X versus not-X—then your
best estimate of the probability of the next roll coming up not-X is 1/1,000,002.
And the distribution of the probability—the curve on the graph—is centered
around that figure. Specifically, Price calculated, there is a 50 percent chance that
the probability of not seeing an X lies between 1 in 600,000 and 1 in 3 million.

Price then goes on: Say you’re not talking about a die. Say you’re talking
about watching the tide come in, twice every day. You’ve seen it a million times
(you’re fourteen hundred years old). There is still a small, but real, possibility
that on the million-and-first time, it just won’t. Rare events happen sometimes,
and no amount of seeing them 7oz happen will ever completely rule them out.
Similarly—Price would say—you might have seen people fail to rise from the
dead a large number of times, but you can’t ever say with certainty that it never
happens.

Hume saw Price’s work. In fact there was a rather lovely exchange between
the two men, which I will tell you about just because it’s so nice to see two
people who disagree so profoundly on something so important—God versus no
God—Dbehaving so civilly.

Price included some mildly rude lines in his essay responding to “Of
Miracles,” such as one suggesting that someone putting forward arguments such
as Hume’s “would deserve more to be laughed at than argued with.” Then the
two men met, and Hume, by all accounts a very affable and reasonable man, left
Price both charmed and ashamed: in a second edition, he removed every
disobliging comment (“it is indeed nothing but a poor though specious
sophism” replaced with “I cannot hesitate in asserting it is founded on false
principles,” for instance) and added a rather apologetic introduction saying that

one shouldn’t accuse one’s opponent of bad faith or disingenuousness.-é-{*- And
Hume, after Price’s apology, sent him a sweet letter saying that he had nothing
to apologize for, that he was “a true Philosopher,” that he had treated Hume

“with unusual Civility... as a man mistaken, but capable of Reason and

conviction,”®> and that Price’s arguments were “new and plausible and

ingenious,” although Hume never revisited the essay.
Price had actually gone further than this in the foreword to Bayes’s paper. He
didn’t make any claims about miracles, but he suggested that Bayes’ theorem



could show that the world progressed according to fixed laws, and thus could
“confirm the argument taken from final causes for the existence of the Deity.” I
am not sure how many modern statisticians would agree with that, but right
from the start, Bayes’ theorem had some lofty applications.

FROM BAYES TO GALTON

Bernoulli, de Moivre, and Simpson had, between them, shown that if you take
lots of measurements of a thing, and (as Bayes pointed out) as long as the errors
in those measurements are random rather than systematic, then those
measurements will tend to center around the true value.

Bayes had shown that if you take into account a prior estimate of what that
true value is most likely to be, you can use those measurements to make
inferences—to make statements about what is likely in the world.

In the years after Bayes’s death, the great French mathematician and physicist
Pierre-Simon Laplace independently arrived at the same conclusions as Bayes,
and gave a rather more detailed account of it. Richard Price visited Paris in 1781
and discussed Bayes’ rule with Nicolas de Caritat, Marquis of Condorcet, who
was a mentor of Laplace’s. Condorcet, and then Laplace himself, went on to

acknowledge that Bayes got there first, hence “Bayes’ theorem” rather than

“Laplace’s theorem,”%¢ even though Laplace’s treatment of the problem was

probably the more impressive.

Probability theory had grown out of games of chance, and out of physics—
the main use had been in astronomy, trying to use the average of several
observations to minimize the overall error. But its use in the social sciences was
obvious—Jacob Bernoulli had talked about the actuary’s problem of working
out how likely someone was to live for another ten years by looking at other
people of similar age and status:

[If] from among the observed three hundred men of the same age and
complexion as Titius now is and has, two hundred died after ten years
with the others still remaining alive, we may conclude with sufficient



confidence that Titius also has twice as many cases for paying his debt to

nature during the next ten years than for crossing this border.6”

Laplace, sixty or so years later, looked at birth rates in Paris and found that
there was a small but real bias toward boy babies—251,527 boys were born in
the city between 1745 and 1770, compared to 241,945 gitls (a roughly 51:49
ratio), and declared that there was only about a 1 in 10 ~ 42 chance that you'd
see a result that extreme if each birth was equally likely to be a boy or a girl.-é-g- He
also noted that there was an even more extreme bias among London births.

But it was Adolphe Quetelet (1796-1874), a Belgian mathematical prodigy,
who really pushed probability and statistics into the social sciences. He worked
as an astronomer and meteorologist at the Brussels Royal Observatory, but his
outside interests were in statistics, and by the age of twenty-six he had become a
senior figure in the national statistical office, analyzing population data and
organizing a census. He also came close to the idea of randomly sampling a
population to get a sense of the whole, as in an opinion poll, and using that
instead of a census, following a model of Laplace’s. But he was talked out of it by
the Baron de Keverberg, who argued that you could never be sure that your
sample was truly representative of the population at large because there was too
much variation in the subpopulations.

Quetelet’s main contribution was that of the “average man.” He gathered
data about people—not just men—along various axes: physical attributes such as
height, weight, strength; moral and psychological ones such as drinking, crime,
insanity. He wanted to find the average along each of these axes, as the
fundamental units for what he would call “social physics.” You could analyze
society along these different axes: How do education levels interact with how
likely it is that someone is convicted of a crime? How about literacy? How about
age?

What Quetelet noticed was that many of these measurements were normally
distributed—he looked at the chest circumference of Scottish soldiers, for
instance, and found the normal curve, similar to how, if you measured the same
soldier’s chest several times, your results would be distributed (by measurement



error) around a mean. He suggested that it meant that things like height, weight,
strength, and even behavioral characteristics, like suicide, were the product of
many small influences, and it was rare for all those influences to point in one
direction or another; usually some would point one way, some another, and so
people’s heights, weights, and drinking habits would tend to cluster around the
population mean, in a normal distribution. “It would be as though each
person’s height had been determined by drawing some large number of pebbles

from the same urn with a given fixed urn-ratio,” writes Clayton, “with each

white pebble making them taller and each black pebble making them smaller.”%?

Quetelet wanted to find laws of human society analogous to the laws of

physics, but he also started to think that the average man was in some way the

ideal person: “a standard of beauty at which nature aims,” in Stigler’s phrase,Z(2

although others suggested that the average person would be mediocre or even
somehow monstrous. Quetelet made various mistakes—he hadn’t realized that
there are other ways for a quantity to be normally distributed, for instance, and

also went around gleefully applying the normal curve to everything he saw. A

later statistician would diagnose the condition of “Quetelismus,””* of seeing the

normal distribution everywhere you look.

But Quetelet’s obsession with the normal distribution caught on somewhat.
And his work led to the idea that you could make probabilistic predictions
about individual behavior and life outcomes by looking at the wider population:
he saw, for instance, in a famous work on jury trials, that there were differences
in the likelihood of being convicted depending on whether the defendant was
male or female, over thirty or under thirty, well educated or not, literate or not.
(If you were hoping to be acquitted, you would prefer to be a well-educated
woman over thirty, by the way, or at least you would in early nineteenth-century
France.)

This was hugely controversial: it seemed to be in conflict with the idea of free
will, that our behaviors and choices were the product of our attributes. It also set
the scene for what would later be called “scientific racism”: one follower of
Quetelet’s, Alphonse Bertillon, found that among the young male population of
a town called Doub, there seemed to be fwo peaks to the curve, as there would be



if you measured the heights of men and women; there were fwo “average men” in
Doub. He suggested that this was because Doub’s inhabitants were of two races,

the Celts and the Burgundians.z-z- This turned out to be a mistake: it was shown
some years later that Bertillon had screwed up as he converted from inches to
centimeters and had made the data look as though it were saying something it
wasn’t. But it paved the way for others to follow. And—for Clayton, at least—
the controversy over measuring humans scared statisticians away from the
Bayes/Laplace model of acknowledging the subjective nature of probability
theory and made them want to hide behind apparently objective, apparently
solid statistics.
It was shortly after this that Francis Galton entered the scene.

GALTON/PEARSON/FISHER AND THE RISE OF
FREQUENTISM

Despite Bayes’s and Laplace’s work, statisticians and scientists don’t, on the
whole, use Bayes’ theorem in their everyday work. Instead, most are what are
called frequentists.

Frequentist statistics do the opposite of what we’ve been talking about.
Where Bayes’ theorem takes you from data to hypothesis—How likely is the
hypothesis to be true, given the data I've seen?—frequentist statistics take you
from hypothesis to data: How likely am I to see this data, assuming a given
hypothesis is true?

That, of course, is what Bernoulli had been doing more than a century
before, and what others had been trying to get beyond. So why did it revert?

Before I go any further: in case it isn’t clear already, this is all phenomenally
controversial stuff. I have written about scientific controversies for quite a few
years now, and they really do get pretty tasty, but the Bayesian-frequentist “stats
wars” are probably the most ill-tempered of the lot. So what follows will annoy
many people even if I get the basic shape of it right.

But my basic understanding goes like this: priors are a problem.



They’re a problem for technical and pragmatic reasons: How do you choose
them? On Bayes’s imaginary not-in-fact-a-billiard-table, he assumed that it was
equally likely that the white ball could be anywhere on the table. That’s called a
uniform prior. That’s defensible—you can imagine that if you throw the ball
hard enough it’ll be essentially random where it lands. But what about situations
where you’re completely ignorant and don’t have good reasons to assume any
prior?

A more technical objection was that of the mathematician and logician
George Boole, who pointed out that there are different kinds of ignorance. A
simplified example taken from Clayton:z-3- Say that you have an urn with two
balls in it. You know the balls are either black or white. Do you assume that two
black balls, one black ball, and zero black balls are all equally likely outcomes? Or
do you assume that each ball is equally likely to be black or white?

This really matters. In the first example, your prior probabilities are one-third
for each outcome. In the second, you have a binomial distribution: there’s only
one way to get two black balls or zero black balls, but two ways to get one of
each. So your prior probabilities are one-quarter for two blacks, one-half for one
of each, one-quarter for two whites.

Your two different kinds of ignorance are completely at odds with each other.
If you imagine your urn contains not 4 but 10,000 balls, under the first kind of
ignorance, your urn is equally likely to contain 1 black and 9,999 whites as it is
5,000 of each. But under the second kind of ignorance, that would be like saying
you’re just as likely to see 9,999 heads out of 10,000 coin flips as you are 5,000,
which of course is not the case. Under that second kind of ignorance, you know
you’re far more likely to see a roughly 50-50 split than a 90-10 or 100-0 split in
a large urn with hundreds or thousands of balls, even though you’re supposed to
be ignorant.

So which prior do we assume? Do we think the color of the balls is
independent or correlated? You may say that you assume perfect ignorance, but
there are different kinds of “ignorance,” and you have to pick one.

But the underlying problem of Bayesian priors is a philosophical one: they’re
subjective. As we said earlier, they’re a statement not about the world but about

our own knowledge and ignorance.yn- And that’s... uncomfortable. The promise



of science and numbers—still, today, but I think even more so in the eighteenth
and nineteenth centuries, when people like Quetelet could use terms like “social
physics” without actual physicists sniggering behind their hands—was one of
objectivity. We should all be able to look at the outcome of some experiment, or
some observational study of the chest measurements of Scottish soldiers, or
whatever, and agree on what it says.

What the Bayesian model seems to say is that whether something is true or
not depends on how strongly I believed it before. So if we carry out a study on
homeopathy or the Higgs boson and find some positive result, then you might
think that result very likely to be real, and I might not, and we might both be
correct to do so—if our prior probabilities were sufficiently different.

There’s something soft and squishy about the idea that probability is
ultimately subjective and personal, rather than something real, out in the world.
If I say, “There’s a 50 percent chance this coin will come up heads,” it feels like I
should be making some statement about the coin, not about my own belzefs
about the coin.

Of course—and we’ll come back to this—“subjective” doesn’t mean
“random,” or “baseless.” Say I have two beliefs: one, that a fair coin tossed fairly
will land heads 50 percent of the time, and two, that there is a 90 percent chance
that I will be abducted by aliens tomorrow. They’re both subjective statements
about my internal beliefs, but most people would agree that the first belief is
reasonable, while the second one is not. But nonetheless, the idea that
probability is 7% your head—that when we say, “There’s about a one-in-six
chance this die will come up six,” we’re making a statement about our beliefs
rather than about dice—was not, and is not, universally accepted by statistical
thinkers.

It was this distaste for subjectivity that seems to have driven the rise of
frequentism.



ARE FREQUENTISTS RACIST?

It’s here that we get into some serious controversy. First, we need to acknowledge
that, by twenty-first-century standards (and arguably by the standards of their
own time), some of the people involved in what you might call the golden age of
statistical thought held pretty appalling views. The question is whether we can
separate those views from the statistical theories these men came up with.

Francis Galton (1822-1911), for instance, was in many ways an extraordinary
man: “perhaps the last of the gentleman scientists.””% The cousin of Charles
Darwin and a qualified doctor who inherited a fortune, he quit medicine and
went off to do whatever took his fancy. He explored Africa and was awarded a
medal for doing so by the Royal Geographical Society; he got meteorological
stations to fill out surveys about the weather and, using the data, became the first
to notice “anticyclones,” the whirlpools in the air that we are familiar with from
satellite images; and, crucially, he pushed forward the use of statistics in studying
humans and, specifically, how things like talent are passed on through families.

Galton spent most of his career at University College London, where he
made various huge breakthroughs. For example: there was a confusing problem
with the “normal distribution.” Imagine that you’re looking at the size of grapes.
You might expect them to be normally distributed: the average-size ones being
the most common, while very large ones and very small ones would be rarer. But
imagine now that the grapes are grown in three areas on the same hill: the north
face, the east and west faces, and the south face. The north face gets the least sun,
so its grapes are smallest (on average). The east and west faces get more, so their
grapes are larger. The south face gets the most, so its grapes are largest.

Each of those sets of grapes would, you'd expect, be normally distributed. But
then... does that mean that the overall set of grapes 7z # normally distributed?
Should we see three peaks on the graph? And what if there were more than three
groups, or if there was a sliding scale of inputs? Or if the amount of rainfall
differed, as well as the sunshine? How come, despite all these different inputs, we
see a normal distribution overall?

Galton was not an especially talented mathematician, so to solve the problem
he used a clever alternative, a thing called a quincunx, which looks a bit like a



fairground game. It’s a big board with an array of pins on it and, at the bottom, a
series of compartments. At the top it has a funnel to pour little ball bearings
into. The ball bearings fall down the board, bouncing (in theory) randomly left
or right off the pins, and landing at the bottom. The balls (as you'd expect) tend
to land in an approximation of the normal curve: the random bouncing tends to
even itself out, in a way that de Moivre would recognize, but sometimes you get
a lot of rightward bounces.

Galton’s insight was to add a second layer of compartments above the first,
which traps the balls higher up the board and that could be released
individually.zs- The balls would lie in a normal distribution in the higher level;
but when you released one compartment, the balls in that compartment would
form a normally distributed curve below it. What Galton showed was that if you
released all the compartments, even though each one formed a normal curve on
its own, they added up to a bigger normal curve.
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What this showed, he said, was that in situations like the grapes, lots of
smaller normal distributions could add up to one big one, as long as the middle-
size distributions were more common (as in our example, where there are two
medium-sun faces, the east and west slopes, and only one each of the extremes,
the north and the south). This allowed Galton and later statisticians to think
about lots of different populations forming part of a larger one.

Galton was also the first to explain what we now know as regression to the
mean, or as he called it, regression to medz'ocrz'z‘y.zé- Looking at sweet peas, but
thinking about humans, he noticed that the offspring of very tall parents tend
not to be as tall as their parents, compared to an average of the two parents’
height; and the offspring of very short parents tend to be rather taller. This was
confusing, because you might expect the offspring’s heights to be normally
distributed around their parents. Galton showed that this was a general finding:
any two variables that correlated somewhat but imperfectly (so, for example,
parents’ height and their offspring’s height, or an individual’s height and his or
her weight, or a country’s population and its GDP) would demonstrate the same
phenomenon. If you find an outlier on one variable—someone very heavy, say,
or a country with a particularly enormous GDP—it’s likely that they’ll be less
extreme on the other variable, just because extreme values are unlikely.

Galton was also very interested in the inheritance of talent. He wrote a book
called Hereditary Genius, looking at how brilliant thinkers often clustered in
families (his own family, with Erasmus Darwin and Charles Darwin as close
relatives, may have been an inspiration). He coined the phrase “nature and
nurture” to refer to the twin inputs of heredity (what we’d now call genetics)
and environment. But what he really wanted to do was to create a science of
human breeding—exgenics, another phrase which he came up with.

I want to be careful here, because there’s a tendency among some
commentators to link a// research into human intelligence and its heritable
nature with eugenics or “scientific racism.” We really can measure human
intelligence pretty well, with the imperfect but generally useful metric of IQ, and
it really is heritable—clever studies designed to separate the input of genes and
environment show that about half of the variance in IQ is caused by the genes



we inherit from our parents.—7--7- It’s a well-established, much-repeated finding,
and intelligence research is good, important science.

But Galton didn’t just want to observe and document facts about how
intelligence is distributed. He wanted to breed humans. “If a twentieth part of
the costs and pains were spent in measures for the improvement of the human
race that is spent on the improvement of the breed of horses and cattle, what a
galaxy of geniuses might we not create!” he wrote..S “We might introduce
prophets and high priests of civilisation into the world.” He was, therefore, in
favor of encouraging breeding among highly successful families, and
discouraging it among less successful ones.

And he was extremely racist.””

He wrote a letter to the London T7mes calling
African people “inferior” and “lazy, palavering savages,” saying that “the Arab” is
“little more than an eater up of other men’s produce; he is a destroyer rather
than a creator,” and that East Africa should be handed over to the Chinese

because, while they are given to “lying and servility,” that is the product of their

education, and “Chinamen” are by nature “industrious [and] order loving.”-g-Q

(Anglo-Saxons were, for Galton, the best extant race, although the best of all
time were the ancient Athenians: “The average ability of the Athenian race is, on
the lowest possible estimate, very nearly two grades [standard deviations] higher
than our own”—a comparable difference, he said, to that between Anglo-Saxons
and Africans.) He was obsessed with cataloguing and comparing the races, with
the tools of science that he himself helped to create.

Galton’s work inspired a later generation of statisticians—notably Karl
Pearson (1857-1936), and after him Ronald Fisher (1890-1962). Like Galton,
Fisher and Pearson were brilliant, and like Galton they were, certainly by the
standards of our day and arguably by the standards of their own, unpleasantly
race-obsessed. Also, they hated each other.

Pearson was a polymath, a historian, philosopher, physicist, lawyer, and
politician before he was a mathematician. In 1885 he became a professor of
applied mathematics at UCL, following in Galton’s footsteps. Galton, upon his
death, left money to UCL to found a chair of eugenics, and Pearson was the first
appointee.



Along with Galton and a third man, Raphael Weldon, Pearson founded a
journal of statistics, Biometrika. He came up with the “chi-square test,” which
allowed mathematicians to check whether a sample of data really was normally
distributed, or whether it best fit some other curve. He also was the first to coin
the term “standard deviation.”

Fisher was younger; he was appointed the University College of London
professor of eugenics after Pearson retired—or rather, the post was split in two,
with Pearson’s son Egon taking the other half. (If your eyebrows went up a little
at the idea that UCL had a “professor of eugenics,” then don’t worry, we’ll come

back to that.) Fisher is a titan of statistical theory; “the dominant figure” of

twentieth-century statistics,ox according to the American statistician Bradley

Efron. The list of modern statistical tools he invented or extended is remarkable.
He was responsible for the various models used in “analysis of variance”
(ANOVA), for the concept of “statistical significance,” for the “maximum
likelihood estimation” (MLE) method for establishing which hypothesis about
the distribution of data would best explain some given data, and for a host of
other things. Fisher was also a pioneering geneticist: when statisticians speak to
life scientists, the statisticians are surprised to hear Fisher described as a great
geneticist, when they think of him as a great statistician, and vice versa.

Both men tried to move statistics away from where Laplace and Bayes had left
it, relying on subjective priors. Ironically, the reason they fell out was over Bayes.
Specifically, it was about the maximum likelihood method. “Likelihood,” in
Fisher’s new jargon, was essentially a way of saying how likely one particular
hypothesis was, given some data, compared to another. For example, imagine
you flip eight heads on ten coins. That’s pretty unlikely on a fair coin: it would
only happen about one time in twenty. But if you had a dodgy coin somehow,
one that came up heads 80 percent of the time, then you'd expect to see exactly
eight heads about one time in three. You’re about seven times as likely to see this
data under the hypothesis “this coin is biased and comes up heads eight times
out of ten” than under the hypothesis “this coin is fair.” So the likelihood ratio
between these two hypotheses is about seven.

Fisher published this in a paper in Pearson’s journal Biometrika.?% But
Pearson read it, and thought Fisher was sneaking Bayes in the back door. You can



see why—it does look a bit like Fisher’s MLE is inverse probability. It’s sort of
like it’s saying, “This hypothesis is more likely than this one.” But actually it’s
not: you might still be more likely to see a fair coin throwing eight heads than a
dodgy one, if there are lots more fair coins than dodgy ones around. All the MLE
does is let you compare how likely you are to see these results if we assume one
hypothesis or another, but it doesn’t, in its own right, tell you which hypothesis
is the more likely.

But Pearson thought it did, and with some other authors he added an
appendix to Fisher’s paper essentially saying it was Bayesian—that it assumed
you were treating the prior probability of each hypothesis as equal—and showed
that (under those assumptions) it was incorrect. This completely blew their
friendship apart (Fisher really didn’t like being called Bayesian), and until
Fisher’s death he would continue feuding with (the by then long dead) Pearson;
Egon Pearson, his son; and Jerzy Neyman, Pearson’s successor.

Like Galton, both Pearson and Fisher had what we would now consider
pretty unpleasant views. Specifically, they both were big fans of eugenics.

Again, I want to be careful here. Many at the time who were very much on
the progressive, liberal end of society were also pro-eugenics. Marie Stopes, the
campaigner for birth control, abortion, and women’s rights, was also a major
supporter of eugenics. John Maynard Keynes, the great economist and liberal
(and my great-great-uncle, so I ought to declare an interest here when I try to
downplay the awfulness of it all), was another. Sidney and Beatrice Webb,
George Bernard Shaw, Bertrand Russell, all heroes of the socialist and liberal
movements, were in favor of selective breeding of humanity in order to create a
better, more perfect society. The term wasn’t, as it is now, associated so heavily
with the right. (In fact, when I was writing stories in the late 2000s and early
2010s about things like embryo screening for disability, in vitro fertilization, and
mitochondrial donation, misleadingly named “three-person babies,” it was
mainly the religious right who criticized them as “eugenics.”)

When Fisher wrote in Galton’s journal Exngenics Review,? for instance, that
“the nations whose institutions, laws, traditions and ideals, tend to the
production of better and fitter men and women” will “supplant” those “whose
organisation tends to breed decadence,” it was probably not as shocking as it



would be today. Or when Pearson—a socialist and liberal with for-his-time
progressive views on women’s emancipation—wrote of the “alien Jewish
population” being “somewhat inferior physically and mentally to the native
population.”-g-ZJE Anti-Semitism was rife among the British liberal intelligentsia
(and the rest of Britain), even as they admired Jewish thinkers like Theodore von
Kérmdn or Baruch Spinoza. People in the past had opinions that we have rightly
discarded, on the whole, today—even Darwin, a very liberal man by the
standards of his day, had views that we would see as enormously racist now.

What’s a bit more interesting, though, is whether Galton, Pearson, and
Fisher’s views on eugenics affected their views on science. Clayton argues
forcefully that they did. “As far as the history of statistics and eugenics go,” he
told me, “they’re intertwined. It’s a necessary part of the story.” At heart, he said,
Fisher and to some extent Pearson hated the idea of Bayesianism because they
wanted a veneer of objectivity for their eugenic views. If it was scence that some
races were inferior and others superior, if it was objective truth that we ought to
discourage breeding among the poor, then we couldn’t argue with it
Bayesianism and its inherent subjectivity, its squishy “What do I think?” nature,
undermined that, Clayton said. “They sought out a kind of scientific authority,”
he told me, “because they knew they’d encounter resistance for this quite radical
upheaval. They wanted that backed by the most unassailable authority possible.”

And he backs this up by quoting Pearson himself. “We believe there is no
institution more capable of impartial statistical inquiry than the Galton
Laboratory,” Pearson wrote in the foreword to his paper about the inferiority of
Jewish children. “We firmly believe that we have no political, no religious and no
social prejudices.... We rejoice in numbers and figures for their own sake and,
subject to human fallibility, collect our data—as all scientists must do—to find
out the truth that is in them.”%>

It would be possible to write whole books about the eugenics movement and
how it intertwined with early science. Many have—Clayton’s own book,
Bernoulli’s Fallacy, goes into it at length, and Adam Rutherford’s Control
describes how much of modern culture has its roots in eugenic ideas, largely
starting with Galton.



But Clayton’s claim is that the whole history of frequentist statistics went the
way it did because of a need to drive eugenics. I don’t think that’s fair. Clayton is
admirably honest about his own motivations—he admits there’s a war between
frequentists and Bayesians, and says in his book, “Consider this [book] a piece of
wartime propaganda, designed to be printed on leaflets and dropped from planes
over enemy territory to win the hearts and minds of those who may as yet be
uncommitted to one side or the other. My goal with this book is not to broker a
peace treaty; my goal is to win the war.” It would certainly help win the war if it
turned out that frequentists were racist.

David Bellhouse, Bayes’s biographer and a statistician himself, is skeptical. “I
wouldn’t buy that line at all,” he said. “That doesn’t make eugenics OK, and it
doesn’t help disentangle the history of early twentieth-century science from its
sordid links to white-supremacist movements; some of the Nazi race ideology
can be traced back without too much difficulty to Galton, for instance. But
that’s for other books to talk about; the question I'm interested in is “Which is
correct?’ or, perhaps more accurately, “Which is more useful?’ rather than
‘“Which had the more unpleasant adherents?’”

THE FALL OF BAYESIANISM

Galton, Fisher, and Pearson weren’t the only people criticizing the Bayesian
approach. The problem that people had, on the whole, was the idea that f you
don’t know which outcome is the most likely, then you should treat them as equally
likely. John Stuart Mill, who was briefly a critic of the Laplace/Bayes model,
wrote in 1843: “To pronounce two events equally probable, it is not enough that
we should know that one or the other must happen, and should have no ground
for conjecturing which. Experience must have shown that the two events are of
equally frequent occurrence.”3¢

For Mill, the idea that probability is just an expression of our ignorance was
silly. Probability, he thought, expressed something real about the world: the
frequency with which events occur. “Why, in tossing up a halfpenny, do we

reckon it equally probable that we shall throw cross or pile?” he wrote. “Because



experience has shown that in any great number of throws, cross and pile are
thrown about equally often; and that the more throws we make the more nearly
the equality is perfect.” The Laplace/Bayes inverse probability, he said, implied
that by doing clever things with numbers, “our ignorance can be coined into
science.”

This is as neat a description of the Bayesian-frequentist disagreement as you
could ask for, I think. Bayesianism treats probability as subjective: a statement
about our ignorance of the world. Frequentists treat it as objective: a statement
about how often some outcome will happen, if you do it a huge number of
times.

As we’ve discussed, there were specific criticisms. Boole noted the problem
that different kinds of ignorance lead to different priors: Are we ignorant of the
overall distribution of the balls in the bag, or of the color of each individual ball?
A related problem was named after the French mathematician Joseph

Bertrand®. (although I’ve taken this adapted version from Clayton). Imagine
someone draws a square and asks you to guess its size. It could be anything
between zero and ten centimeters along each side.

If we assume a uniform prior—that is, that any length is equally likely—then
we should also say that a 1 cm x 1 cm square is just as likely as a 9 cm x 9 cm
square.

But on the other hand, surely we should also say we’re uniformly ignorant of
the area of the box. The largest area it could have is 100 square centimeters (10
cm x 10 cm). If we’re assuming uniform ignorance, then a piece of paper less
than 50 square centimeters in area should be just as likely as a piece of paper
more than 50 square centimeters in area.

The trouble is that those two claims can’t both be true. If we’re uniformly
ignorant of the length of the sides, then it’s more than 70 percent likely that the
square will have an area less than 50 square centimeters. (A 7 cm x 7 cm square
would have an area of 49 square centimeters, because 7 x 7 = 49.) Meanwhile, if
we’re uniformly ignorant of the area, then it’s 75 per cent likely that the sides
will be at least 5 cm long (5 x 5 = 25). Again, as with Boole’s criticism, there are
different kinds of ignorance, and we are ignorant of which one to use. (Later



Bayesian thinkers would introduce the idea of “higher-level priors,” describing
your ignorance of which prior to use.)

John Venn, the English philosopher and creator of the famous diagrams, who
was a teacher of Fisher’s at Cambridge, took Mill’s idea that probability is about
how often things actually happen in the real world, not about our estimates of
how likely they are, and expanded on it. For him, when we say, “A fair coin will
come up heads 50 percent of the time,” what we mean is “If we flipped the coin
an infinite number of times, it would come up heads in half of those flips.” Of

course, we can’t actually flip a coin an infinite number of times. But, said Venn,

we should imagine doing 50.88

Fisher followed Venn and was explicit about it. “[When] we say that the
probability of a five with a die is one-sixth, we must not be taken to mean that of
any six throws with that die one and one only will necessarily be a five; or that of
any six million throws, exactly one million will be fives; but that of a
hypothetical population of an infinite number of throws, with the die in its
original condition, exactly one-sixth will be fives.”$?

There’s a fun little addendum to this. Fisher gave Venn and Boole, and the
mathematician George Chrystal, credit for undermining Bayesianism. “The first
serious criticism [of Bayesianism] was developed by Boole,” he wrote. “In the
latter half of the nineteenth century the theory of inverse probability was

rejected more decisively by Venn and by Chrystal.””

But none of these men actually did that.2X Boole did point out problems
with the concept of a uniform prior, but didn’t propose that the whole concept
be abandoned, just that it presented a difficulty. He wrote, in a very Bayesian,

subjective way, that “all the procedure of the theory of probabilities is founded

on the mental construction of the problem from some hypothesis,”?-z-

and
acknowledged that a principle of ignorance is a good starting point.

Venn, meanwhile, was also critical, but only of a subset of Bayesian thinking:
the rule of succession, the idea that (as we talked about when we discussed
Bayes’s not-in-fact-a-billiard-table) the chance that an event that has happened 7
times in x attempts will happen the next time with probability (= + 1)/(x + 2).

Remember: if you roll the ball on the table five times, and it ends up to the left



of the line twice, the chance that it will do so the sixth time is not 2/5 but 3/7.
Fisher himself was highly critical of Venn’s reasoning on this point, and the
criticisms would have been equally damaging to Fisher’s own work.

Chrystal, hilariously, had simply made a mistake. He had applied Bayes’
theorem to another version of Bertrand’s box paradox, and noted that it implied
that the chance of drawing a white ball from a bag in certain circumstances was
three to one in favor. But, he said, it was obvious that the re4/ answer was fifty-
fifty. So Bayes’ theorem was wrong. But it wasn’t: three to one was in fact the
correct answer, and Chrystal had been led astray by his own intuitions.

Of the three thinkers Fisher called upon to support his attack on
Bayesianism, none of them really did the job: it was Fisher himself (and
Neyman, and to some extent Pearson) who did it. But nonetheless, Bayesianism
was rendered unfashionable for a long time, and frequentist
Fisherian/Pearsonian statistics are very much the standard among professional

statisticians and scientists today. Fisher, who called Bayes’ theorem a “staggering

falsity,”?--3- “perhaps the only mistake to which the mathematical world has so

deeply committed itself,”2% which “must be wholly rejected,”?-s- had won.

STATISTICAL SIGNIFICANCE

I probably ought to tell you what frequentist statistics actually involves. There’s
lots to it, but at its heart it is the not-inverse probability: it is sampling
probability, the probability that Bernoulli (or even Fermat and Pascal) would
have recognized. It is What is the chance of seeing this result, given some
hypothesis?

If you’ve ever read any stories about science in the media, you’ll probably
recognize the phrase “statistical significance.” You may also have come across “p-
values.”

A p-value is the likelihood of seeing results at least as extreme as those you’ve
seen, given the null hypothesis, which is to say, the hypothesis that whatever effect
you’re looking for zsn t real.



Imagine you’re looking at some data you’ve gathered. Let’s say you’ve got
data on people’s IQ, and also their shoe size, and you want to see whether people
with big feet tend to be cleverer. By definition, the average IQ is 100. You have
fifty people with above-average-size feet—say, people with US size thirteens and
over. You give all of them an IQ test, and you see that the average score is 103.

But, of course, it’s a relatively small group of people, and (as Bernoulli noted)
any idiot could tell you that small sample sizes are less reliable than larger ones,
and fifty isn’t the biggest sample size in the world. What can you say about your
hypothesis, given your results? What frequentist statistics, of the Fisherian
tradition, would do, is imagine that you knew that there was no effect—that
people with big feet were no more likely to have high 1Qs than the rest of the
population. That is your null hypothesis.

You then calculate how likely it would be to see data like those you’re seeing,
in precisely the Bernoulli fashion, under the null hypothesis, and you call that
your p-value. If, say, you'd only see results at least as extreme as the ones you’ve
seen one time in every ten, then your p—value is one over ten, or 0.1.

Ive just stuck the “IQ and feet” example into an online calculator, made a
few assumptions about the sample, and got a p-value of about 0.16. In essence,
that means that if the greater-footed citizen was no more likely to have a high IQ
than anybody else, and you picked groups of fifty of them at random from the
population, then about one time in every six, you'd find that your group was at
least this different from the population average, whether higher or lower.

But what does that mean? Can I or can I not say that big-footed people are
cleverer?

What Fisher did was suggest that we should choose some arbitrary level at
which we say, “OK, it’s pretty unlikely that wed see results this extreme given
the null hypothesis, so I’'m going to behave as though it’s a real effect.”

Fisher himself said that a p-value of 0.05—a result sufficiently extreme that
youd only see it one time in every twenty—would be a good cutoft, although
that was very much just a rule of thumb: “It is convenient to draw the line at
about the level at which we can say: ‘Either there is something in the treatment,
or a coincidence has occurred such as does not occur more than once in twenty
trials,”” he wrote: that is, p = 0.05. But that’s completely arbitrary—you can and



should select whatever level is most appropriate for the task at hand: “If one in
twenty does not seem high enough odds, we may, if we prefer it, draw the line at
one in fifty (the 2 percent point) or one in a hundred (the 1 percent point).
Personally, the writer prefers to set a low standard of significance at the S percent
point, and Zgnore entirely all results which fail to reach this level.”2¢

Whatever level you decide upon is called your alpha. If your p-value is lower
than your alpha, then you can “reject the null hypothesis” and treat the effect as
though it’s real. We call that reaching statistical significance. If your p-value is
higher than your alpha, then we cannot reject the null, and we treat the effect as

though it is not real.

TAILS | WIN

I've elided quite a lot of info in that IQ-and-feet example. What | did was
called a “one-sample t-test,” which compares the mean of a sample to a
known population mean (in this case, 1Q). As well as the sample size, you
also need to know the standard deviation—in the case of 1Q, fifteen. And you
also need to decide whether it's a one-tailed or a two-tailed test.

Here's what that means. Imagine you're flipping a coin and you want to
know whether it's fair or not. You flip the coin fifty times, and it comes up
heads thirty-two times. What is the probability of something like that
happening? Well, you work it out with your Pascal’s triangle (or stick it in an
online calculator, which is much easier), and it tells you: the probability of
getting at least thirty-two heads from fifty coin flips is 0.03, or 3 percent.
That's below Fisher's magical number of 0.05, so you can declare that it's
statistically significant and get your “Coin Flipping: A Statistical Investigation”
paper published in Nature.
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But hang on. Was there a particular reason why you thought the coin was
biased toward heads? No? You'd have been equally surprised if it had come
up with thirty-two tails, wouldn't you? So really you ought to be looking at the
chance of a surprising result at either end of the spectrum. The probability of
seeing thirty-two or more tails is also 0s03, so you can add them together—
0.03 +0.03 = 0.06.

The point is that unless you have some reason to only be looking at one
end of the distribution, you'll be equally surprised by seeing extreme results
at either end. So you need to look at both “tails.” Which means that in order to
be declared statistically significant, your result needs to be twice as extreme
as it would need to be if you're only looking at one tail.
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NORMAL PROBAB\W\TY

Of course, there’s a lot more to it than this. But I think it’s fair to say that this
is the fundamental bit. You have a null hypothesis: there is no effect. You have an
alternative hypothesis: there is some effect. If your data comes back, and it’s
sufficiently extreme that it would only appear one time in twenty or fewer given
the null hypothesis, then (under Fisher’s explicitly arbitrary ruling) you can
reject the null hypothesis and act as though the alternative hypothesis is true.

Over the long run, in ideal circumstances, this should work. If you keep
testing the IQs of lots of groups of people with big feet, and the null hypothesis
is true that foot size and IQ are uncorrelated, then you’ll only see weird outlier
results one time in every twenty. And if you do see p < 0.05 results more often
than that, then that’s evidence that there is some correlation.

The trouble is, and we’ll come back to this later, the circumstances are not
ideal, and it is very easy to con yourself (or others) that a p-value of 0.05 or less



means there is only a one-in-twenty chance that your hypothesis is false. In fact,
it can be far, far more likely than that.

BAYES AT BAY

While the Bayesian model became unpopular, it never quite went away. For
some things—as Fisher himself would acknowledge—it was the only way to do
statistics. If you do know the background rate of some medical condition in the
population, then it will give you the correct probability that someone has that
disease if their test comes back positive; if you just go on the accuracy of the test
itself, then you’ll get it wrong an awful lot.

And despite Fisher’s (and Neyman’s and Pearson’s) furious rejection of
Bayesianism, people kept rediscovering or reinventing it, because it kept
Working.?z

Harold Jeffreys, a Cambridge geologist, was the key figure in early scientific
Bayesianism—he wrote that Bayes’ theorem “is to the theory of probability what

Pythagoras’ theorem is to geometry.”-9-§

While Fisher worked with pea plants and
mice, experiments that gave precise answers and could be repeated as many times
as required, Jeffreys looked at the propagation of seismic waves through the
Earth. It was Jeftreys who first showed, in 1926, that the core of the Earth is
liquid—9—-9-—and, in fact, that the outer mantle is mainly silicon-based stone, while
the inner core is mainly iron and nickel.

The data he used was much messier than that which Fisher was able to get his
hands on. He wanted to use the time at which waves were detected at various
seismological stations to pinpoint the epicenter of an earthquake, and also the
nature of the material through which the waves passed. But earthquakes were
relatively rare, and the data was noisy, so there was a lot of uncertainty.
“Necessarily,” wrote David Howie, a historian of statistics, “these inferences

were tentative. They were advanced not with certainty but with degrees of

confidence that were updated or modified to account for new information.”->=
That is: they were done in a Bayesian fashion.



Each time Jeffreys got new information, he updated his prior confidence in
his hypotheses. Jeffreys himself wrote: “Every scientific advance involves a
transition from complete ignorance, through a stage of partial knowledge based
on evidence becoming gradually more conclusive, to the stage of practical

certainty.” The uncertain parts of science, he said, are “the most interesting

part.”-l-(-)-l- He acknowledged uncertainty in everything, even—notably—for the

correctness or otherwise of a scientific law. Dennis Lindley, another great
Bayesian, wrote in a tribute after Jeftreys’s death that “Jeffreys considered
probability to be the appropriate description for all uncertainty, whereas
statisticians usually restrict its use to the uncertainty associated with data.”->=
That is, if you’re not sure whether Geneva is the capital of Switzerland, or
whether the universe is 13.8 billion years old, or whether your husband is
cheating on you—all of which are things that are either true or false, whether or
not anyone knows the true answer—]Jeffreys would be happy using probability
to express your confidence in the proposition.

(Howie also notes that Jeffreys was a “keen student of detective stories.” In
“fair-play” detective fiction, the reader should be given all the information that
the fictional detective uses to solve the mystery. Devotees of this genre treat the
novels more like a crossword puzzle than a story. Jeffreys would take notes on
each character as he read, noting their alibis and motivations: “Another instance
of drawing inferences from incomplete and unreliable data!” says Howie.)

Jeftreys sounds like a rather avuncular figure—“so quiet and gentle a man

that it is hard to imagine his getting cross with anyone,”-1-9-3- says Lindley—who

went from his childhood school in County Durham to St. John’s College,
Cambridge, and stayed there for seventy-five years, until his death. He contrasted
oddly with his fire-breathing contemporary Fisher, but the two were friends of a
sort, despite their deep philosophical disagreements. Jeftreys thought that the
whole basis of frequentist statistics—the p-value and statistical significance, the
“How likely is this data given the null hypothesis?” approach—was topsy-turvy.
He and Fisher engaged in a two-year debate in the pages of the Proceedings of
the Royal Society of London, each arguing his case. It was inconclusive in
substance, but Jeffreys lost in practice: frequentism remained the standard.



At around the same time, other scientists were trying to reconcile the
problem of subjective priors. Three scientists came up with the same idea at
around the same time as the Jeffreys-Fisher debate: Emile Borel, Frank Ramsey,
and Bruno de Finetti. All three agreed that, yes, priors were subjective. But that
didn’t mean they were made up. Each scientist independently suggested that a
way of quantifying priors was to place bets.

We’ll go with Ramsey’s version. Frank Ramsey was an English genius who, by
the time he died at the age of just twenty-six, had already made major
contributions to the fields of logic, mathematics, philosophy, and economics.
His insight in probability theory was that probabilities are beliefs; our beliefs, if
we act on them, are themselves a kind of bet. As Ramsey put it: “All our lives, we
are in a sense betting. Whenever we go to the station, we are betting that a train

will really run, and if we had not a sufficient degree of belief in this, we should

decline the bet and stay at home.”2% This approach meant the bet could be

quantified: the “probability of 1/3 is clearly related to the kind of belief which
would lead to a bet of 2 to 1.7:%2

This was the start of the idea of Bayesianism as decision theory, which we’ll
come back to. Ramsey’s insight laid the groundwork for later work into
economic rationality, and decision-making under uncertainty. “[He] set out a
framework that tells us what is rational, given an agent’s beliefs and desires,”
wrote Ramsey’s biographer Cheryl Misak.

Say you are at a crossroads, unsure of which path will get you to the
parking lot most quickly. Say that, if you choose the shorter route, you
will get 30 units of happiness or well-being, and if you choose the longer
route, you will get 18 units. You have a degree of belief of 2/3 that the
right-hand road is the shorter route, and 1/3 that the left-hand road is
shorter. Ramsey’s model lets you calculate your expected subjective utility
for each option, and tells you that, given your beliefs and desires, it is

rational for you to take the right-hand road.1%



So your priors are subjective, true—but they can still be good or bad, and
they can be tested. More than that, they can be incoherent. If your probabilities
don’t add up, then you can be taken for a ride by anyone offering you bets.
Imagine a bookie that offered odds on three horses: one at evens (you'd double
your stake if you won), one at three to one against (quadrupling your stake), and
one at four to one against. If you took the bookie up on all three bets, then you
could bet £100 on the first, £50 on the second, and £40 on the third. You’d have
paid £190 in bets, but you'd be guaranteed £200 in returns. If probabilities are
beliefs, and beliefs are implied bets, then your beliefs—though subjective—can
be inconsistent in the same way.

Away from science and professional statistics, Bayes’ theorem continued to
burble away. During the Second World War—when, among scientists, Fisherian
frequentism was dominant—people with more urgent, practical concerns over

how to make good inferences from limited data were either using Bayes’ theorem

or developing it themselves.1%”

Alan Turing, the great Cambridge mathematician, was brought into the
British military during the war to help crack German codes and stop
transatlantic shipping getting sunk by U-boats. The U-boats communicated
with their bases via radio, but the messages they sent were encrypted via a
mechanical device known as the Enigma machine, which created new ciphers
regularly. Turing built an early computer to try to decode it—to work out which
letter was standing for which.

The trouble was that there were an extraordinary number of different
possibilities. Treating them each as equally plausible would have meant that, if
the machine checked one hundred possible combinations a second, it would
have taken many trillions of times the life of the universe to check them all. It
meant that Turing and his team had to use priors—to assume that some
combinations of letters were more likely than others. So the three-letter sequence

« _»

E-I-N, ein, German for “a” or “one,” would be more likely—he reasoned—than
the sequence J-X-Q. Words like “WIND” or “CONVOY” would be more likely
than “ITCH” or “SBALLET.”

Turing formalized this intuition into a Bayesian framework and built the
beginnings of modern information theory around it—he created a term called



the “ban,” which referred to a unit of information comparable to the modern bit
or byte.

At the same time, insurance underwriters were using Bayesian methods to set
premiums for workplace liabilities. Quality-control assessors in military
manufacturing were using Bayesian ideas to minimize the number of shells that
had to be tested to establish confidence. Artillery commanders used Bayes’ rule
to give the best firing solutions. But in science, frequentism still ruled, until the
1970s.

MINE EYES HAVE SEEN THE GLORY

“I only ever went to one,” says Andy Grieve. “After that one my wife wouldn’t
let me go any more, because I missed the plane coming back and wasn’t there for
a wedding the following weekend. They were unbelievable.”

Grieve is a statistician, a former president of the Royal Statistical Society, in
fact, now semiretired after nearly five decades in the pharmaceutical industry.
He’s also a Bayesian. He’s talking about the legendary Valencia conferences,
where Bayesianism reached its modern form.

In the 1970s, the great statistician Dennis Lindley, then the head of the
Department of Statistics at University College London, had—according to the
Spanish mathematician José-Miguel Bernardo, who had just completed his PhD

era.

That might not have been as huge an accolade as it sounds: away from UCL,
Bayesianism was very much a sideshow. “At University College the world looked
Bayesian; thus, it came as a kind of a shock to discover that in most statistical
conferences you had to fight for your right to work within Bayesian statistics to a
mainly unsympathetic audience, with no real time left to go into the details of
your work,” Bernardo went on. Grieve remembers something similar: “When we
were first giving public lectures on Bayes,” he says, “it wasn’t unusual to be given
the before- or after-lunch slot. The comedy slot. ‘Andy’s going to be talking

>

about Bayes.”



In 1976, Lindley, Bernardo, and the by now somewhat elderly Bruno de
Finetti attended what they believed to be the world’s first international Bayesian
conference, in Fontainebleau, France. Over a pleasant lunch, having spent several
days not having to start every conversation with an argument about Bayesianism
versus frequentism or being treated like the “... and finally” item at the end of
the BBC’s The Six O’Clock News, the three of them decided that they ought to
do it again. A similar experience was had in Florence a year later, and then
Bernardo took a position at Yale and spent some time traveling the United States
giving seminars, where he met a great selection of brilliant thinkers—George
Box (son-in-law of Ronald Fisher) and L. J. “Jack” Good (Bletchley Park veteran
and early Al theorist) among them. After one of these seminars, Bernardo got
chatting with the statistician Morris DeGroot, and “during a very long evening,
with plenty of scotch, we talked about many aspects of life and somehow, by
dawn, we came to talk about statistics, and we agreed to make an effort to try to
organize an international Bayesian meeting at the first available occasion.”

Bernardo then took a professorship in biostatistics at the University of
Valencia, just as Spain was emerging from decades of fascist dictatorship and
starting to open up. He suggested to the Spanish education minister that they
make Valencia the venue for “a first Bayesian world meeting.” The first one was
in 1979.

I say this cautiously, because people probably won’t believe it about an
academic statistics conference, but it sounds pretty wild. “They were a lot of
fun,” Grieve says, with a tone of wistful reminiscence. “A lot of hard work, but a
lot of fun. We'd work in the mornings, then have a siesta—2 p.m. to 6 p.m. we'd
do nothing in terms of statistics—and then 6 p.m. to 10 p.m. working again,
then we'd have dinner. The parties where we used to sing didn’t start until 10
p-m.”

Yes, the parties where they used to sing. After dinner at the first conference,
Bernardo recalls, “George Box sang “There’s No Theorem Like Bayes’ Theorem,’

established a tradition called the Bayesian cabaret. A few minutes on the internet
will find you more examples than you could possibly need. There exists, stored



on the servers of the University of Minnesota, for reasons I don’t fully
understand, a “Bayesian songbook,” containing such wonders as:

Thomas Bayes’s Army [The Battle Hymn of Las Fuentes]
Words: P. R. Freeman and A. O’'Hagan
Music: Traditional [“The Battle Hymn of the Republic”]

Mine eyes have seen the glory of the Reverend Thomas Bayes,
He is stamping out frequentists and their incoberent ways,
He bas raised bis mighty army at the Hotel Las Fuentes,

His troops are marching on.

Glory, Glory, Probability

Glory, Glory, Subjectivity

Glory, Glory, on to infinity

His troops are marching on!

It continues in this vein at some Iength.—l-l-Q

Over the years there was also a song called “José Bernardo,” which was sung
to the tune of the Macarena; Andy Grieve sang a repurposed medieval students’
drinking song, “Gaudeamus Igitur,” along with another future president of the
Royal Statistical Society, Professor Sir David Spiegelhalter; there was a
“Bayesians in the Night” to the tune of “Strangers in the Night”; a “Like a
Bayesian” (“Like a Virgin”). And so on.

I mentioned this on Twitter and Sir David got in touch to say that, alas, “Our
performance of “The Full Monty Carlo’ was before the smartphone era, so no
recordings exist.”>>~ “Who would want to see a video of six male professors of
Bayesian statistics taking their clothes off in front of a screaming crowd in a
Spanish nightclub?”~-= he went on to ask, in my view entirely misjudging the
nature of the modern internet.) There absolutely are videos, from later
conferences, of “Bayesian Believer,” a Monkees reimagining (“Then I saw Tom
Bayes, now I’'m a believer”), and “What a Bayesian World,” a la Louis
Armstrong.



Another attendee of the second Valencia conference told me that he, José
Bernardo, and a cohort of the world’s most eminent Bayesian statisticians went
for a swim off a boat up the coast, the wind nearly blew them onto some rocks,
and it all got a bit hairy and life preservers were thrown. “If we'd all have
drowned,” he said, “that would have knocked the development of Bayesian
statistics on the head rather.”

“I have a sweatshirt from the third Valencia conference,” Grieve says
cheerfully, “saying ‘Bayesians have more fun.””

In the decades since Fisher and Jeftreys fought it out, and since Bayesian
methods were all but removed from scientific work, even as they were quietly
used almost by default in other areas, Bayesianism has made something of a
comeback. Partly that was Jeftreys’s book being passed down almost like
samizdat. (“Ah, you want to calculate the probability that a hypothesis is true,
not just the probability that you'd see this data if it is true? Here, try this.”)
Partly it was that in a lot of areas—software engineering, most notably—a form
of Bayesianism just kind of fell out of the way people did the numbers, as Turing
had found some decades earlier. “There’s an interesting dynamic,” Aubrey
Clayton says. “People who come from the new schools of data science—machine
learning, Silicon Valley tech folks—they see this as more of a settled debate, for
the same reasons Turing did. You do these problems and of course Bayesian
methods are what you'd use. Outside of academic science, you might get the idea

that Bayesianism is what everyone uses.”->

Again, Grieve says something similar: “About the turn of the millennium, I
was working in Connecticut for Pfizer, and I spent the weekend visiting an old
friend, an electronics engineer who used to work for Hewlett-Packard. He'd set
up his own business and was developing methods for searching through data
quickly on large computer discs. The algorithms he’'d developed were essentially
Bayesian. He was totally unaware of what he was doing. There are lots of areas
where Bayesian algorithms are being developed and people don’t realize.”

As Bayesian methods became more widespread, tensions started to rise.
Bayesians were the underdog and also the up-and-comers, frequentists the
establishment. (Bayes himself, a Nonconformist outside the established Church,



might have appreciated the irony.) It got remarkably heated, at least in public
debates.
“There was a famous statistician, Maurice Kendall,” says Grieve, “whose

textbook--= on statistics was around when I was a student. He wrote a paper in

1968 in which he said that if Bayesians would only do as Bayes did and publish

posthumously, we'd all be saved a lot of trouble.” > Meanwhile Dennis Lindley

wasn’t exactly pouring oil on troubled water, telling a conference in 1975 that
“the only good statistics is Bayesian statistics. [Bayes] is not just another
technique to be added to our repertoire alongside, for example, multivariate
analysis: it is the only method that can produce sound inferences and

decisions.”--2

There was a certain bright-eyed evangelical quality to Bayesians, as there often
is when a small group outside the mainstream believes that it has the truth (see
also: the environmentalist movement, cyclists, literal Evangelists). That doesn’t
mean that they’re wrong—you can’t tell whether something’s true or not by
psychoanalyzing the people who believe it. But it does mean that Bayesians could
be quite annoying, and as a result, they annoyed the frequentist establishment.

It also meant that they often got called a “cult,” a situation that may not have
been helped by the singalongs about “Mine eyes have seen the glory.” The
statistician Larry Wasserman published a blog post titled “Is Bayesian Inference a

an anonymous former Bayesian statistician responded to it saying that “I used to

be one of those believers in the Bayesian Truth,” but he had “lost my faith,”118

We shouldn’t overstate the enmity between Bayesians and frequentists—
especially nowadays, but even when the Valencia conferences were going on and
Bayesianism was growing in confidence. Grieve remembers that after roaring
debates at the Royal Statistical Society, “they’d slag each other oft in public, in
those arguments and disputes. But afterwards they’d be going to dinner in a taxi
together. While it does sound tough, a lot of them were great friends.” He
remembers reading a paper by Spiegelhalter, a fellow Bayesian, in the 1990s, and
thinking, “They had joined a recent tradition of avoiding controversy and



pursuing the practical benefits, even though the former was more entertaining. I
do think there was a bit of entertainment in it.”

There’s a term in professional wrestling, kayfabe, which means maintaining
the illusion of reality—so the Undertaker still goes on about how much he hates
Hulk Hogan even once the bout is over and he’s just doing an interview or even
walking to a store. There seems to have been an element of kayfabe in the
Bayesian-frequentist wars. Grieve points out that George Box, the first of the
Valencia cabaret artists, wrote a paper in 1985 essentially admitting as much. In
“An Apology for Ecumenism in Statistics,” he says, “I believe that scientific

method employs and requires not one, but two kinds of inference,” Bayesian

and frequentist.—l-}?-

This does seem to be the case. Jens Koed Madsen, a cognitive psychologist at
the London School of Economics, told me that he uses both frequentist and
Bayesian statistics, depending on the question he’s trying to answer. Sophie
Carr, a Bayesian statistician and founder of a consulting firm literally called Bays,
says that a lot of the work she does isn’t Bayesian at all. And Daniél Lakens, a
statistically minded psychologist who has a reputation as an arch-frequentist and
hammer of the Bayesians, cheerfully admits in his online course that you need
Bayesianism if you’re going to make statements about how plausible a
hypothesis is, and told me when I spoke to him that Bayes really is necessary for
decision theory.

Perhaps now we ought to take a look at the state of statistics in science today.

LInnotation:x=1+2+3+4+5..
I1. In notation: x = (1/2) + (1/4) + (1/8) + (1/16) + (1/32)...

III. As an aside, this drives me mad. Why sixty and ten? Why not six and one? The Quidditch
scoring system in Harry Potter is equally stupid—the two means of scoring get you 10 and 150
points, respectively. Why not 1 and 15?2 Why the extra zero? While I’'m ranting about Quidditch,
it’s also completely insane that grabbing the snitch is worth fifteen times scoring a goal and
essentially renders the entire effort of the team to score goals pointless.

IV.9+9+0=18,18/3=6.



V. This is pronounced “Lester-sher,” because England is a mysterious and contrary place.

VL Yes, yes, posterior. Get your chuckles out of the way now, we’re not going to be able to avoid
the word for the rest of the book.

Bayesianism,” trying to base priors on logical principles. “I don’t think [Jaynes] succeeded,”
Kevin McConway of the Open University told me, “but he did have a good try.”



CHAPTERTWO

Bayes in Science

THE REPLICATION CRISIS IN SCIENCE, AND
SOME WAYS TO FIX IT

In 2011, a series of unwelcome things happened, and science was shaken to the
core.

Not everyone noticed. The “replication crisis,” as it was known, probably
didn’t affect your daily life (it didn’t affect mine for some years, and I was writing
about science for a living). Most scientists—even most psychologists, whose
discipline was the worst affected—were able to go on for quite a long time as if
nothing had happened. But 2011 was a very important year for science, and for
scientists who had even a vague understanding of statistics—and who cared
about finding out true things rather than just getting citations and tenure—it
has a certain Year Zero quality to it.

First, a senior scientist was found to have been fraudulently making up his
data. Diederik Stapel, a rising star in social psychology and a professor at Tilburg
University in the Netherlands, had made a splash with a series of headline-

grabbing papers: one suggesting that eating meat made people more antisocial;!
another finding that people are more likely to be racist if the environment

they’re in is filled with litter.2 But it turned out that for those two studies and
several others, he had never performed the experiments or gathered the data. He

had just made it up.-3- That’s not great, but sometimes fraud happens. It was



detected (eventually). He was fired and dozens of his papers were retracted from
the scientific record.

What was more worrying, for thoughtful scientists, was how science could go
wrong even when scientists weren’t committing fraud.

In March of the same year, the social psychologist Daryl Bem, working at
Cornell University in New York State, published a study called “Feeling the

Future.” It was a classic social psychology study, in many ways, known as a
“priming” study. In priming, experimenters take a bunch of subjects—usually
university students being paid a few bucks or given course credit—“prime” them
with some concept, and see how it affects their behavior. The priming might be,
for instance, that you give them some jumbled-up words to unscramble, and
then make them do a task, and see if the words you’ve primed them with affect
how they do that task.

The study of priming started out with relatively unremarkable things, like if
you give someone the word “doctor” to unscramble, then afterward they’ll be
faster at recognizing the word “nurse” than they are at recognizing unrelated
words. But then they started investigating more surprising things: the idea that
priming in these subtle ways had major, dramatic effects on our behavior.

A very famous example, for instance, was John Bargh’s 1996 study,-s- which
found that priming people with words like “wrinkle,” “bingo,” and “Florida”—
words associated with age, especially in the US—made them walk more slowly as
they left the laboratory, as though they had aged. Another, from 2006, found
that priming people with concepts related to money made them less willing to
seek or offer help—to be more selfish, basically.-G- Another found that exposing

people to the smell of fish made them more suspicious, because—seriously—it

“smells ﬁshy.”z

These studies were the bread and butter of social psychology in the 1990s and
2000s. They’d been around since the late 1970s, but their heyday came a few
decades later. And they seemed to demonstrate an extraordinary susceptibility in
the human mind: we could be manipulated into all sorts of strange behavior by
subtle, unconscious cues. Those people walking slowly out of John Bargh’s
laboratory had no idea that the word “Florida” had made them think of



shuffleboard-playing retirees, but somehow it had, and more than that, it had
made them behave like one. It seemed to show that our conscious minds were
just blown around, leaves on the wind of almost undetectable cues from our
environment. You may not have heard of it, but you’ve probably heard of its
intellectual offspring, “nudging” and “subliminal advertising.” When Tyler
Durden in Fight Club splices frames of pornography into children’s movies, too
fast for people to see with their conscious minds, it’s based on ideas taken from
priming research.

In his book Thinking, Fast and Slow—also published in 2011—the Nobel
Prize—winning psychologist Daniel Kahneman wrote of priming: “Disbelief is
not an option. The results are not made up, nor are they statistical flukes. You

have no choice but to accept that the major conclusions of these studies are

true.”s

But then along came Bem.

Bem’s study consisted of several experiments, but we’ll focus on just one of
them: an entirely unremarkable example of priming in all ways except one. The
experiment, like the rest of them, gave a prime and saw how it affected behavior.
In this case, the subjects were primed with a positive or negative word
(“beautiful,” say, or “ugly”) and then were shown images and asked to press a
button, as quickly as possible, to indicate whether the image shown was pleasant
or unpleasant. Traditional priming literature would predict that people given a
positive prime would be quicker to say that pleasant images were pleasant, slower
to say unpleasant images were unpleasant, and vice versa.

The big twist, though, was that in half of the trials, the subjects were given
the prime after they had been shown the image. And—this is the important bit—
the priming worked. People were quicker to indicate that pleasant images were
pleasant when they were given a positive word, even though the word didn’t
appear until after they’d made their choice.

The finding was statistically significant—a p-value of 0.01; enough, by
modern convention, to reject the null hypothesis. And Bem suggested that this
was evidence for “psi”—for psychic powers, clairvoyance. The other eight
experiments in the study, using subtly different methods, but all of them



essentially social-psychology staples with the time order reversed, similarly
achieved significance.

Most of us would probably agree that psychic powers don’t exist. But here
was an apparently well-carried-out study that appeared to find—nine times!—
that they do. It used the same methodological and statistical tools as other
psychology studies; it used the same cutoft for significance, of p = 0.05. So either
clairvoyance is real, or there was something going wrong with statistical practice.
(Daryl Bem, for the record, still believes that the answer is that clairvoyance is
real and that his studies were correctly detecting it.)

The third great blow of 2011 came in the form of a paper called “False
Positive Psychology” by the psychologists Joseph Simmons, Leif Nelson, and Uri

Simonsohn.? It did much as Bem’s paper did—used bog-standard statistical
techniques to prove an impossible result. But unlike Bem, Simmons, Nelson,
and Simonsohn did it on purpose, to show that those bog-standard statistical
techniques, used throughout science, were badly flawed.

Again, there were various experiments within the study, but we’ll focus on
the most famous one. In the study, they asked twenty undergraduates to listen to
a song—either “When I'm Sixty-Four” by the Beatles, or “Kalimba” by Mr.
Scruff. Then they compared the ages of the two groups. It turned out that
people who had listened to “When I’'m Sixty-Four” had become nearly eighteen
months younger. Again, it was statistically significant: p = 0.04.

Once more I think most people would agree that it is unlikely that listening
to the Beatles actively makes people younger—not simply makes them feel
younger, but makes their birthdays become more recent. The result cannot be
real. And yet, once more, the “False Positive Psychology” paper proved it to be
real, to the standards of modern social science, and only used the same statistical
methods that other scientists were using every day.

Some scientists had been warning that something like this was coming. In
2005, Stanford’s John Ioannidis had written a paper titled simply “Why Most
Published Research Findings Are False.”!? Tt said that the statistical practices in
much of science left it open to this sort of problem. The problems in science
were many and varied, but a major one was that scientists weren’t asking how

likely their hypothesis was to be true, given the data they had collected—they



were asking (as Bernoulli had, and Fisher) how likely it was that they would see
the data they had collected, if the hypothesis was false.

Funnily enough, the apostle of modern Bayesianism, Dennis Lindley, had
foreseen something of this problem way back in 1991, when he wrote a tribute
to Harold Jeffreys in the journal Chance. “Many experimentalists, when asked
what 5% significance means, often say that the probability of the null hypothesis
is 0.05,” he wrote. But, of course, that’s not what it means: it’s just how likely
you would be to see data at least that extreme, if the null hypothesis were true. In
fact, Lindley pointed out, if you used Jeftreys’s Bayesian methods and agreed to
only publish if there were a 5 percent chance of the null hypothesis, then you
would reject a lot of published papers: “It is more likely to have significance at
5%,” he wrote, “than to have a probability as low as 5% for the null hypothesis.
Thus, on this scale, a significance test is more likely to suggest a difference than is
Jeffreys’s method.”11

And then he put his finger on the crux of the problem. “This may partly
account for the popularity of tests with scientists, since they often want to
demonstrate differences,” he wrote. “It would be interesting to know how many
significant results correspond to real differences.”

The answer, the scientific world would learn to its horror twenty years later,
was “nowhere near as many as you'd hope.”

How can that be, though? If a study finds a p-value of 0.05 or less, that
means that you'd only see those results (or more extreme ones) by chance one
time in twenty at most, doesn’t it? So surely, if every study is using that
yardstick, you wouldn’t expect to see many false positives.

That is the idea, sure. But it’s not as straightforward as that. The easiest way
to get a p < 0.05 result—that is, something that you'd only see by coincidence
one time in twenty—is to do twenty experiments, and then publish the one that
comes up. That’s exactly what the “False Positive Psychology” people did: they
measured lots and lots of things, when they were looking at their
undergraduates. Their parents’ birthdays, how old they felz, their political
orientation, whether they referred to the past as “the good old days,” a whole
bunch of things. They also gave them another song to listen to: “Hot Potato” by
the Wiggles.



Then they cut their data up in different ways. Are people who listened to
“Hot Potato” more right-wing than people who listened to “Kalimba”? Did
“Kalimba” make people more nostalgic than “When I’'m Sixty-Four”?

If you chop these things up in different ways, with a small sample size like
twenty, you can easily get false positives. They also did other things, like
stopping collecting data if their p-value dropped for a moment below 0.05.
Simmons, Nelson, and Simonsohn estimated that by running a few simple tricks
like this, you could make it more than 60 percent likely you'd find an apparently
significant result.

This is known as “hypothesizing after results are known”—HARKing—or
“p-hacking,” and it happens all the time, not just in wry papers intended to
demonstrate that it’s possible. One example: there’s a thing called the
competitive reaction time task (CRTT), which is used to measure aggression,
especially in research into the psychological effects of video games. A player plays
either a violent or a nonviolent video game. Then they take part in a competitive
game against an opponent: the first to react to some stimulus wins. And the
winner gets to blast their opponent with some noise, potentially at a painful
level.

The twist is that the opponent in the game isn’t real—it’s just a computer
program. But Malte Elson, a psychologist, noticed that in the 130 papers that
had been published using the CRTT in video game aggression research by 2019,

the data had been analyzed 157 different Ways.-l-z- Sometimes they measured
volume of the first blast, sometimes average volume over twenty blasts,
sometimes duration of the first blast, sometimes volume times duration, and so
on. It would be near-impossible not to find a significant result like that.

You might ask: Why? Why would people do this, if they’re trying to find out
whether something is true or not? The answer, at least in part, is that scientists,
although they do want to find out whether things are true, also want to be
promoted, and get tenure, and feed their families, and all those boring things.
The basic driver of academic success is summed up in the phrase “publish or
perish.” If you’re not getting your research published regularly in journals—
preferably “high-impact” journals like Nature and Science—then you’re not
going to get that professorial position at a redbrick university.



This wouldn’t matter, so long as journals published every study that was
submitted to them, regardless of whether or not the researchers found whatever
they were looking for. But, of course, they don’t.

Science journals—not a// science journals, but most, including most of the
big names—publish results that are interesting and novel. That might not sound
too terrible, but it means that a study that finds something interesting
—“psychic powers are real,” for instance—is more likely to be published than a
study that finds something more boring, like “we looked for evidence of psychic
powers and didn’t find any.”

And, of course, a lot of journals—again, not all, but a lot, especially in the
social sciences—use p < 0.05 as their threshold for “found something
interesting.” If your experiment returns results that are p = 0.045, it may well get
published. If it returns results that are p = 0.055, it may well not.

This is a problem for science in its own right. Imagine one hundred labs carry
out studies into whether or not psychic powers are real, and ninety-five of them
find nothing, but five of them find statistically significant results (p < 0.05! You'd
only see results like that five times out of every one hundred if it wasn’t real!).
But because journals want to publish interesting, novel things, they might very
well publish all five of the “psychic powers are real” papers and only one of the
“psychic powers aren’t real” papers, meaning that if someone went to the
scientific literature, they’d find that 85 percent of studies looking into psychic
powers find them. If you speak to many scientists, you’ll hear a lot of stories of
them getting rejections because their results weren’t “novel” enough, which, of
course, means that the scientific literature systematically fills up with “novel,”
exciting studies that do find things, while the boring, not novel, but often more
actually true findings are rejected.

But it also has knock-on effects, in that it incentivizes scientists to find ways
—even if only subconsciously—of getting that p < 0.05 positive result if they
possibly can: often by doing the exact things that the “False Positive Psychology”
people did so elegantly.

Perhaps the most famous example of this was the food scientist Brian
Wansink, a star at Cornell University who received millions of dollars in US
federal government funding under the Obama administration. He published



lots and lots of studies about our eating behavior—notably, one about how men

eat more in the company of women2 (presumably to impress them); another
about how giving vegetables more “attractive” names (calling carrots “X-ray
vision carrots,” for instance) makes elementary school children eat twice as much
of them .14

Then, in 2016, he made the mistake of publishing a blog post titled “The
Grad Student Who Never Said ‘No.””*2

The grad student in question was a Turkish PhD candidate. When she
arrived at Cornell, Wansink “gave her a dataset of a self-funded, failed study
which had null results”—a study that looked at eating behavior in an all-you-
can-eat Italian buffet over a month. In his words, he told her: “This cost us a lot
of time and our own money to collect. There’s got to be something here we can
salvage because it’s a cool (rich & unique) data set.” So the PhD student went oft
and cut up the dataset in lots of different ways. And, inevitably enough, she
found lots of p < 0.05 correlations—enough for her and Wansink to publish five
papers from it (the “men overeat to impress women” paper among them).

This raised some scientists’ and science journalists’ eyebrows, and they started
raking through Wansink’s other research. Also, Stephanie Lee, a science
journalist at BuzzFeed, got hold of his emails, in which—it transpired—he had
told his PhD student to cut the data up into “males, females, lunch goers, dinner
goers, people sitting alone, people eating with groups of 2, people eating in
groups of 2+, people who order alcohol, people who order soft drinks, people
who sit close to buffet, people who sit far away, and so on,” in order to “mine it

for significance... squeeze some blood out of this rock” and get it to “go virally

big time.”!6

As a result, eighteen of Wansink’s papers have been retracted; seven have
received “expressions of concern,” which journals append to studies they don’t
think can be fully trusted, but aren’t ready to retract altogether; and fifteen have
been corrected.r” Wansink, meanwhile, resigned from Cornell in 2019, after the
university found him to have committed scientific misconduct, and barred him

from teaching and research.:3



This is a particularly egregious example, but in a way Wansink was unlucky
that he was publicly destroyed for something that was almost standard practice.
P-hacking goes on all the time, in much less dramatic ways—and a lot of
scientists have absolutely no idea that they’re doing anything wrong. The
aforementioned Daryl Bem, in a 1987 book chapter written as a guide to help
students get their research published, wrote that “there are two articles you can
write: the article you planned to write when you designed your study; the article
that makes the most sense now that you have seen the results. The correct answer
is the second one.”

He called for researchers to “analyze the sexes separately, make up new
composite indexes... reorganize the data to bring them into bolder relief.... The
data may be strong enough to justify recentering your article around the new
findings and subordinating or even ignoring your original hypotheses.... Think
of your dataset as a jewel. Your task is to cut and polish it, to select the facets to

highlight, and to craft the best setting for it.”12 It’s not intended as a call for p-
hacking, but “recentering your data around the new findings” is exactly what
both the “False Positive” guys and Wansink were doing, and as they
demonstrated, if you do that, you can very easily get statistically significant
findings from utterly meaningless noise.

So far we’ve just looked at specific scientists, but it’s worth getting a sense of
how big a problem this was in science at large. In late 2011—alarmed by the
various things that had come to light that year—Brian Nosek, a psychologist at
the University of Virginia, launched something called the Reproducibility
Project. He got 270 researchers to collaborate in attempts to replicate one
hundred psychology studies—that is, redo the experiments, using the same
methods but new data, and see if they found the same results.

Nosek and his collaborators published the resulting paper in 2015.22 Of the
one hundred studies they looked at, ninety-seven had originally found
statistically significant results; Nosek et al. were able to do the same in just thirty-
six. The effect sizes of the replications were, on average, half the size of the
originals. More than half of those effect sizes fell outside the 95 percent
confidence intervals of the original papers’ findings. Ioannidis’s (and Lindley’s)



warnings—that many, possibly most, scientific findings in the published
literature were false—had been shown to be prophetic.

You might be wondering what this all has to do with Bayes’ theorem. Well:
the cause of the replication crisis has been greatly discussed. It is a story of bad
incentives—publish or perish, the demand for novelty—and scientists have
come up with many sensible proposals for how to fix them. Lowering the
threshold for “significance” is one; requiring preregistration of hypotheses in
order to prevent HARKing is another; having journals agree to publish papers
on the strength of the methods, not the nature of the findings, in order to avoid
the novelty filter, is a third.

But you could go deeper and say that the underlying cause of the replication
crisis is even more basic: it’s that science, like Jakob Bernoulli three hundred
years ago, is doing sampling probabilities, not inferential probabilities.

A p-value is not, as we’ve discussed, a measure of how likely it is that your
hypothesis is true, given your data. It’s a measure of how likely it is that you
would see that data, given a certain hypothesis. But—as Bayes noted, and as
Laplace later fleshed out—that’s not enough. If you want to measure how likely
it is that your hypothesis is true, you simply cannot avoid priors. You need Bayes’
theorem. The question, of course, is whether that 75 what you want.

A MOON MADE OF CHEESE, PSYCHIC
POWERS, AND FASTER-THAN-LIGHT
PARTICLES

Here’s the fundamental point, as Bayesians would see it. Imagine you do some
study to test some hypothesis—we won’t say what it is yet—and you get a p-
value of 0.02. How likely is it that your hypothesis is true? It’s an annoying fact
that a large number of people who definitely should know better would say that
the probability is 98 percent. The chance of seeing those results by chance is one
in fifty, so the probability that it 7s coincidence is 2 percent, right? Hopefully by
this stage you’ll know that that’s not true. But most scientists, it seems, don’t.



A 2007 study asked forty-four psychology undergraduates, thirty-nine
psychology professors, and thirty psychology professors who specifically act as
instructors in statistical methods to read six statements about statistical
significance and mark them as true or false. 2t Every single undergraduate, 90
percent of the professors, and 80 percent of the methodology instructors—
again, the people whose job it was to instruct students on statistical methods—
marked at least one statement wrong. A third of the two latter groups, and two-
thirds of the undergraduates, thought that the p-value indicated the probability
that your results were due to chance, given the data—the probability, that is, that
the null hypothesis is true. So if you have a p-value of 0.05, that means there is
only a one-in-twenty chance that your hypothesis is false. That is, of course, not
the case.

What’s perhaps even more astonishing than that is that another study looked
at thirty Introduction to Psychology textbooks and found that twenty-five of
them gave a definition of “statistical significance,” and that twenty-two of those
twenty-five were WI'Ol’lg.-Z--Z- Again, the most common error was that they assumed
a p-value gave the probability that the results were due to chance. This is (as
we’ve been discussing for quite some time now) completely backward. What p-
values tell you is how likely you are to see that data, given a hypothesis.

But the fact that not everyone understands what p-values are for doesn’t
mean that everyone who advocates for them is an idiot or that they don’t
understand them.

I spoke to Dani¢l Lakens, a psychologist at Eindhoven University of
Technology in the Netherlands and, in the circles I move in, largely considered

an arch—frequentist.1 He cheerfully acknowledges that, unless you know the
prior probability of your hypothesis, you can’t know from the p-value how likely
it is that your hypothesis is true.

What a p-value does, he says, is let you know how often, over the long run,
you would get false positives if the null hypothesis is true. And, he says, if you get
a p-value of less than 0.05, then that allows you to act as 7f you have rejected the
null hypothesis—to do more research, or to publish your study. But it’s only

ever provisional.



The trouble Bayesians have with this framework is that it privileges really
stupid ideas. Go back to that study, with the p = 0.02 finding. Let’s say it was a
study into whether hammers fall downward faster than helium balloons (in
Earth’s ground-level gravity and atmosphere). You drop one hammer and one
helium balloon together six times, and you find that the hammer hits the ground
first each time. Your p-value for that result, on a one-tailed test, is about 0.02. It’s
statistically significant! You’re pretty unlikely to see that result by chance.
Hooray. But it’s not really very exciting.

But now let’s say that, instead, the study was into the existence of psychic
powers. You get some undergrad to choose between two identical pictures, but
after they choose, you flash a pornographic image where one of them used to be
(one of the experiments from Bem). You do this six times. All six times, the
undergrad chooses the one that is followed by the porn pic. Again, your p-value
is about 0.02.

As far as the frequentists are concerned, that’s all the information you have to
go on. You have your data, you have your hypothesis. Neither is any better than
the other.

According to the frequentist model, you’re justified in treating both of those
findings the same—as permission to act s if the null hypothesis is false and there
is a real effect here. But most of us would probably agree that there genuinely is a
real effect in the hammers-fall-faster-than-helium-balloons study. Your p = 0.02
result doesn’t really change that very much. You believed it already. And most of
us probably agree that there 7572 7 a real effect in the “undergraduate students can
psychically detect porn” study. If it’s true, it’s really surprising.

Given that journals want novel, exciting results, and given that frequentist
models don’t take into account prior probabilities, and given that if you do
twenty experiments the odds are you’ll get a statistically significant result in at
least one of them even if there’s no real effect, there’s an obvious incentive to do
the “Are undergrads psychic?” experiment. “If everything is being assessed with
the same rubric,” says Aubrey Clayton, “you might as well choose the most
outlandish theory you can because it’ll get the most buzz and notoriety. With
frequentism, people have incentives to come up with the novel, surprising

theories.”



He argues that, instead, you should take prior probabilities into account. “If
you have some hypothesis, like ‘the moon is made of cheese,” you'd have very low
priors, so new data doesn’t move the needle much,” he says. “It might give you a
hint of being convinced, but it doesn’t drown out your prior skepticism. That’s
what Bayesian statistics gives the scientist, a vehicle for skepticism, a way to say, ‘I
don’t believe this theory.’

“It’s a perverse incentive, for scientists to be looking at theories that we
should have a priori skepticism about. We should raise the evidentiary bar.”

For Lakens, though, this is silly. “The Daryl Bem stuft is the perfect example,”
he says. “Popper [Karl Popper, the great twentieth-century philosopher of
science] talks a lot about dogma—he doesn’t want dogma to enter the scientific
process.

“So if an editor says, ‘T don’t believe this precognition stuff,” I'd say, ‘I don’t
care. Shut up. Publish the things.””

He gives another, perhaps more important, example. In 2011, an experiment
at the European Council for Nuclear Research (CERN, best known for the

Large Hadron Collider) spotted something extraordinary.22 CERN had a
particle accelerator in Geneva and a particle detector in Italy, and the former
fired neutrons toward the latter, 730 kilometers (450 miles) away. Using atomic
clocks, precise to some unfathomably tiny fraction of a second, the researchers
recorded the time the neutrons left the accelerator and arrived at the detector.

They noticed that the neutrons arrived in Italy sixty-billionths of a second
sooner than they thought possible. That was an extremely statistically significant
result—it had a p-value of about 0.000000002, meaning that if it was purely by
chance, you'd only see results that extreme one time in every 500 million.

It was also extremely unlikely to be true. By arriving those crucial sixty
nanoseconds too soon, the neutrinos had apparently broken the speed of light.
Nothing can break the speed of light—it is perhaps the most fundamental axiom
of the relativity theory. As things get faster, their mass increases, and that mass
approaches infinity as they near light speed. In order to get any particle with any
mass at all to the speed of light would require infinite energy, which is
impossible. If this CERN finding was real, it would involve a huge rewriting of
modern physics.



So even given a p = 0.000000002 result, most physicists would have been
extremely confident that the finding was not, in fact, real. “The result is
impossible,” says Lakens. “But should we have hidden it, because it was an
embarrassment? No. You don’t hide it, that’s not how it works. And sometimes
in history [these weird findings] have been the breakthrough thing that we
didn’t want to miss. I don’t like dogma in science.”

As it turned out, of course, the CERN result wasn’t real. Further
investigation found that a fiber-optic cable in the clock system had not been
screwed in properly—this meant that a laser signal within the clock was not
picked up quite so quickly, speeding the apparent arrival of the neutrinos by
about 75 nanoseconds—enough to make it seem as if they had got there before a
beam of light could.?4

Perhaps we should point out that, in a way, the frequentist-Bayesian
argument doesn’t matter here, or at least it’s more complicated than I’ve made it
seem. Whatever your Bayesian prior is, unless it’s something outrageous, then a
six-sigma (standard deviation), p = 0.000000002 result would overwhelm it
easily. I don’t think a reasonable Bayesian would be so confident as that: they’d
need to think there’s only about a one-in-several-hundred-million chance that
light speed could be broken. If you believed that the only explanation for the
neutrinos’ apparent early arrival was that they had genuinely traveled that fast,
then the result should have convinced you.

But no one did think that. So it wouldn’t have mattered how strong that
effect was, because no physicist would have believed that it meant that the theory
of relativity had been overturned. Instead, they’d have assumed that there was
some other explanation—a measurement error, an equipment fault, perhaps
fraud. And of course there was (not fraud, I hasten to say). The result wasn’t
chance—there was a real effect, but it was caused by the faulty fiber-optic cable,
not by superluminal particles.

Later on, we’ll talk about what happens when you get strong statistical
evidence for some highly implausible theory—often, the good Bayesian thing to
do is to assume that the evidence is misleading in some way. (Which gets
controversial.)



Anyway. Lakens’s point is that you don’t get to pick and choose. If a
scientific experiment is seemingly well performed, and it returns some startling
result, then, he says, it’s not right that you simply don’t publish it on the
grounds of having a low prior. He cites Popper again: “Popper hated Bayes. He
didn’t want Bayes as part of his philosophy of science. I'm just joining him in
saying it.” Popper’s philosophy of science said, to oversimplify, that you never
prove a scientific hypothesis—you only disprove it or fail to do so. The Bayesian
idea that you can build up evidence for or against is very much opposed to it.

Lakens, in fact, disagrees with the entire premise of the Bayesian revolution—
or the foundational tenet of the Bayesian faith, if you prefer. The line I have
been repeating is that frequentist statistics tells us, “How likely are we to see this
data, given this hypothesis?,” but that what we really want to know is “How
likely is it that my hypothesis is correct, given this data?” Lakens rejects this
entirely. “I call this the statistician’s fallacy,” he says. “By which I mean, the
statistician’s job isn’t to tell people what they want to know. As a scientist, I’'m
capable of deciding for myself what I want to know. And I don’t want to know
the probability that a theory is true. Or rather: I don’t believe it’s achievable. I'd
like it like I'd like world peace. In theory, I'd like to get there. But knowing which
theories are true is regrettably beyond us.”

It’s not that he denies that, say, the hypothesis that hammers fall faster than
helium balloons is more plausible than the hypothesis that undergraduates are
psychic for porn. “Popper would say it’s not about plausibility or epistemology,
but about having been severely tested. And the theory of gravitation has been
more severely tested than the theory of precognition, so I'll build on the first and
not on the second. It’s not about belief and you can’t quantify it. I assume it’s
true without assigning it a probability.”

What I find interesting, talking to Lakens, is how far he agrees with Bayesians.
In his fascinating online statistics course, he does a segment on Bayes early on,
and makes it clear that you can’t assess the chance that a hypothesis is true
without a prior probability. He’s also clear that a p-value of X means very
different things depending on that prior probability. He cites Ioannidis, for
instance, on why most published scientific findings are false, and points out that



it’s because most of the research was carried out into things that are a priori
unlikely.

In fact, he acknowledges that he does something implicitly Bayesian. When
he chooses what to research, he chooses a hypothesis that he thinks is a priori
likely to be true. “Am I going to study precognition? No. In that sense I'm
implicitly using Bayesian decision-making. My prior is low that it’s going to yield
something of value, so ’'m not going to do it. As a scientist—as a human being
—1I use it to pick topics. But my evaluation of the data is not based on my
priors.”

Instead, he says, once you've got the data, you let the p-values stand for
themselves. “You don’t believe in the Higgs boson because you had a prior, you
saw data and you updated it,” he says. “They did two five-sigma tests [each
equivalent to p-values of about 0.0000003]. Either the result is true, or we live in
the only one out of 11 million universes where we got this level of data by fluke.”

Instead of relying on priors, he says, we should be working to get better data
—raising our standard for what counts as statistically significant, say. “If I need
to impress people, I'd lower the error rates,” he says. “Strongly lower the alpha
level [the technical term for ‘level at which you count something as statistically
significant’]. Then if I find something it’s highly unlikely to be a fluke.” That’s
easy in physics when you have a particle accelerator, or in genetics with huge
genome-wide association studies, but he says it can be done in social sciences as
well. “The Many Labs studies [Brian Nosek’s coalition for replicating studies]
reaches the same threshold. Meta-analyses [aggregations of earlier studies] use
five-sigma thresholds. Or sometimes people do it implicitly—like the Food and
Drug Administration says you have the normal alpha level, but you have to do it
twice: so one S percent might be a fluke, but a second is 5 percent of 5 percent,
s0 it’s very severely tested.”

POPPER AND HIS SWANS

Daniél Lakens invoked Karl Popper in his rejection of Bayesianism, so perhaps I
ought to say what Popper argued.



Back in the eighteenth century, David Hume raised the problem of induction.
All of our scientific reasoning, he said, is based on an assumption that the future
will be like the past. If I drop a hammer and a helium balloon 1,000 times, and
the hammer hits the ground first each time, we assume that lets us predict that it
will do so the 1,001st time.

But the only reason that we think the future is like the past is because, in the
past, it always has been. “[All] our experimental conclusions proceed upon the
supposition that the future will be conformable to the past,” Hume wrote in A7

Enquiry Concerning Human Undemmndz'ng.-z--s- Using the same evidence to
demonstrate that the future will be like the past “must be evidently going in a
circle, and taking that for granted, which is the very point in question.” Perhaps
on the 1,001st time, we will release the hammer and it will fly due magnetic
north, or it will hover while rotating around its long axis, or it will turn into a
hummingbird, while the helium balloon crashes solidly to the floor.

Of course, we do use the past as a guide to the future, and “none but a fool or
madman will ever pretend to dispute” the fact. But Hume struggled to
understand how you could base that reasoning on solid philosophical grounds.
He said that ultimately our expectation that the future should be like the past
was due to “custom.” “Perhaps we can push our enquiries no farther, or pretend
to give the cause of this cause,” he wrote, “but must rest contented with it as the

ultimate principle, which we can assign, of all our conclusions from

experience.”—z--é- Hume believed that we just have to take it as an axiom,

unprovable, that “the future will resemble the past.” And its rational basis
notwithstanding, empiricism—experience, observing the past and drawing
conclusions about the likely future—was still reliable.

Understandably, philosophers weren’t very happy leaving it at that, and the
problem of induction has been a niggling thorn in their side for the last 250
years. It’s a particular pain for philosophers of science—and philosophically
inclined scientists—who want to say that when we do some study showing that
some drug cures a disease or that uranium-238 decays into lead-206, we are not
just saying that something happened once, but that it will continue to happen in
the future. We want to be able to use that drug to cure other people, or use that
uranium to fuel power plants or blow up cities.



Some philosophers—notably Paul Feyerabend—argued that this meant that
all science was irrational, and that there was therefore no reason to think any one
scientific theory better than any other. (When asked why, in that case, he tended
to fly in airplanes rather than on brooms, he replied, “Because I know how to use
planes but don’t know how to use brooms, and because I can’t be bothered to
learn.”%’)

Karl Popper, the great Austrian-British philosopher of science, tried to
sidestep it, arguing that science didn’t rely on induction at all. He said that when
scientists test theories, they don’t confirm them—they just fail to falsify them.
His famous example was that of a simple hypothesis, A/ swans are white.
Imagine that you see a white swan. Does that prove that all swans are white? No,
of course not. We could see another white swan; it still won’t prove it. There is
no number of white swans that you could see before you could say with
certainty that 4/l swans are white. That’s simple Aristotelian logic. You can’t
infer a universal law from individual examples: the syllogism “This is a swan, this
swan is white, ergo all swans are white” is not a valid one.

What you can say, though, is that if you see a swan that 777 white, the
statement all swans are white cannot be true. The universal statement a// swans
are white denies the possibility of any black (or green, or multicolored) swans. If
you see even one, then you have falsified the hypothesis a// swans are white.

Popper thought that this was how science advances—not by confirming true
scientific hypotheses, but by falsifying false ones. “I happen to believe that in fact
we never draw inductive inferences, or make use of what are now called
‘inductive procedures,’”” he wrote. “Rather, we always discover regularities by the

essentially different method of trial and error, of conjecture and refutation, or of

learning from our mistakes.”28

You might feel (and I would agree with you) that this doesn’t seem to be the
whole story. The theory of aecrodynamics has not been falsified, and nor has the
hypothesis that there is alien life on Europa. But I feel great confidence in the
theory of aerodynamics—I will even fly for thousands of miles through the air in
a metal tube, supported by nothing more than the pressure differential between
the upper side of the wings and the lower side, because I trust the theory and its
practical applications. I feel much /Jess confidence in the aliens-on-Europa theory.



It could well be true, but so far no one has gone to check, and I would not bet
on it unless at highly favorable odds. Naively, at least, Popper’s model suggests
that these two hypotheses are equal in validity.

Popper would say, though, that there is a difference—one has been severely
tested, and one has not. “We choose the theory which best holds its own in
competition with other theories; the one which, by natural selection, proves
itself the fittest to survive,” he wrote. “This will be the one which not only has
hitherto stood up to the severest tests, but the one which is also testable in the

most rigorous way. »2? He called such a theory “corroborated.”

I’'m not a giant of modern philosophy like Popper is (although I got a good
grade in my master’s!), so I’'m somewhat outgunned intellectually here. But I
must admit that I think this is a bizarre position. The idea that a “severely tested”
or “corroborated” theory isn’t in some way more likely to be true than a theory
that hasn’t been is strange. If you (or Popper) were to place a bet on whether
some outcome predicted by the theory of aerodynamics was true—say, that my
Boeing 777 will successfully leave the ground when it reaches 165 mph on the
runway—and another bet on whether or not there are alien fish on Europa, you
(and I expect Popper) would be willing to bet at much lower odds on the plane
thing. That’s because you’ve seen much more evidence of the first than of the
second. Saying that the plane thing “has been more severely tested” seems
indistinguishable in all but semantics from “is more likely to be true.”

I’'m not alone in my distrust of Popper. “Popper! Come on!” says Eric-Jan
Wagenmakers, a professor in the stats and methodology unit of the University of
Amsterdam’s Psychology Department. “Popper said some pretty strange
things,” he says. “None of our hypotheses are ever true, but some are more easy
to reject than others? In which case, why would you try to falsify them in the
first place?”

Unlike his fellow Dutchman Lakens, Wagenmakers is—by his own admission
—“a militant Bayesian. Not as militant as Aubrey [Clayton] but still, pretty
militant.” So he suggests the use of—unsurprisingly—Bayesian methods instead.

The problem that Popper’s falsification model has is that it doesn’t actually
help. Most scientific hypotheses are not straightforwardly falsifiable by a single
counterexample. If I were to hypothesize that “acetaminophen cures headaches,”



I’m not arguing that acetaminophen cures every single headache—if I gave you
acetaminophen and your headache didn’t go away, that wouldn’t disprove the
hypothesis. In fact, I’'m not even claiming that acetaminophen cures most
headaches. I'm only claiming that, statistically, you are more likely to recover
quickly from a headache if you take acetaminophen than if you don’t (or if you
take a placebo).

This is (as I understand it) where Popper’s and Fisher’s approaches come
together. Neither man would ever say that a hypothesis has been confirmed here,
only that it has not been rejected. Fisher would say that you tentatively behave as
though a hypothesis is true if your p-value is below 0.05; Popper would say that
you can call it “corroborated” if it has been tested a lot and not found wanting.
They just don’t put numbers on it.

For Bayesians like Wagenmakers, though, this is just hiding from reality, a
position forced on frequentists by their upstream decision to reject Bayesian
priors. “If they admit that it makes sense to encode prior knowledge as
numbers,” he says, “they’d have no choice but to become Bayesian. So they take
refuge in intuitive priors—they intuitively reason in a way that makes sense, but
only informally.” That is, he says, what Lakens is doing when he says he is
Bayesian in his choice of topics to research, or what Popper is doing when he
says that some hypotheses have been “more severely tested” and so you should
build on them, while others have not.

In fact, late in his career, Popper did attempt to quantify “corroboration.”>"
But the resulting equation ends up as functionally equivalent to the “relative
belief ratio”—a Bayesian measure.>t

Wagenmakers also strongly disputes Lakens’s suggestion that, actually,
researchers aren’t interested in the inferential probability question. To reiterate:
frequentist statistics answers the question “How likely are we to see this data,
given a hypothesis?” What I have been suggesting researchers want to know—
although Lakens and other frequentists deny it—is the inverse question: “How
likely is this hypothesis to be true, given the data we’ve seen?”

“The questions you can address with frequentist statistics are of no interest
to researchers!” says Wagenmakers. “It gets the conditioning wrong. We don’t
want to know how surprising the data is if the null hypothesis is true; we want to



know the plausibility of the null hypothesis, now that we’ve seen the data.
Ultimately, fundamentally, that’s the question.”

He and some collaborators tested this hypothesis by asking lots of authors of
papers published in the journal Nature Human Bebaviour about their beliefs.
“We asked them about the claim in the main title of the paper,” he said. ““Men
enjoy eating apples more than pears,” or whatever. And we asked the authors
what the plausibility of the main claim was before they saw the data and after.
Every researcher, which is rare in science, said the data had made the claim more

plausible than it was before.2 But those questions are beyond the realm of
frequentist statistics!”

If you read scientists’ writing, they do tend to talk about the probability of
their hypotheses. Here’s Einstein, for instance: “I knew that the constancy of the
velocity of light was something quite independent of the relativity postulate and
I weighted which was the more probable.”> And again: “[Abraham and
Bucherer’s] theories should be ascribed a rather small probability because their
basic postulates concerning the mass of the moving electron are not made
plausible by theoretical systems which encompass wider complexes of

phenomena.”?f*- Scientists clearly do think in terms of the probability that their
hypotheses are correct, not just whether or not they’ve been falsified.
Instinctively, at least, scientists think like Bayesians.

BAYES AND THE REPLICATION CRISIS

Here’s the basic advantage that Bayesians have over frequentists: they don’t have
to leave data on the table. Jens Koed Madsen, the LSE psychologist I mentioned
who uses both frequentist and Bayesian methods as the mood takes him, puts it
like this: “Frequentists have this weird thing where they have to jettison
everything else. It makes it incredibly volatile.” That is, every time they do a new
study, in theory at least, all the information from the previous studies just gets
forgotten. The hammer-falls-faster-than-the-helium-balloon hypothesis starts
from scratch just as the undergraduates-are-psychic-for-porn hypothesis does.



That means that your beliefs about the world can be blown around very easily,
like leaves on the breeze. And that means that, as Madsen puts it, “it’s easy to
find a significant effect. You can fudge around with p-values because you always
assume this is the first study to look at it.”

For instance—I'm taking the numbers in this example from Daniél Lakens’s
marvelous online statistical inference course on Coursera, which I really cannot
recommend highly enough—imagine you’re collecting some data. Say, are
people with red hair more likely to eat soup? You know the background rate of
soup-eating in the population, so you just get two hundred redheads, ask them,
“Do you eat soup?,” and record the results.

Now as it happens, gingers are no more likely to eat soup than the rest of us.
(Let us stipulate, for the sake of argument, that I haven’t actually tested this
hypothesis.) But as we’ve seen, the nature of the p = 0.05 cutoft means that if I
were to run the experiment twenty times, I'd expect, on average, to see a
significant result once. That’s what a p-value of 0.05 means, remember: a result
so extreme that you'd only expect to see it once in every twenty experiments, if
there was no effect.

Imagine you do your experiment. But, after asking your first ten redheads
about their soup-eating habits, you stop and have a look at your data. And if
your p-value is below 0.05, you say, “Well, looks like I've found a significant
result!,” and you run off to Nature to get your paper published. If it’s not, you
carry on, and check after each new redhead whether the situation has changed.
This doesn’t seem like it should matter very much. Isn’t it just saving time? And,
in fact, in a lot of cases, it could save lives—if your vaccine trial, say, is showing
strong early results, then it’s important to know, so you can start getting it into
arms rather than waiting months for more results.

But amazingly—to me, at least—this relatively innocuous bit of peeking early
at your results changes your chance of getting a statistically significant result
enormously. If the null hypothesis is true, and there’s nothing there to see, then
without peeking early, you'd see a p < 0.05 (that symbol means “equal to or less
than”) result one time in twenty; with peeking early, that jumps to about one in
two.



Here’s a graph, plotted in some statistics software using a script of Lakens’s,>>

showing an example of how the p-value jumps around if you check your data
after every new entry:
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The dotted gray line is at p = 0.05. If the solid black line drops below it, then
your data is (for that brief moment) statistically significant at the 0.05 level. In
this example, it drops below it twice—a researcher could have stopped at either
of those moments and declared a finding. Even though we know (because we
know how the software has been programmed!) that there is no real effect here.

I ran this script a few times, and the black line always wobbled about
dramatically. About half of the time, it dropped below the dotted gray one in
those first two hundred observations. If you were an unscrupulous researcher, or
even if you were just a naive one, you could very easily find apparently
statistically significant results in noisy data when there’s nothing really there, just
by checking your data a few times before you originally intended to.

If you were a Bayesian, though, this wouldn’t be a problem. You’ve already
got the data from your priors—whatever they are—so each new data point
coming in moves your opinion much less. And, of course, each new result forms
part of the new prior for your next bit of information.

Dennis Lindley, the Bayesian primarch of Las Fuentes, argued that “the
experimenter can go on sampling until he has reached the significance level «,

and yet the fact that he did so is irrelevant to a Bayesian.”-3--6- Others—including
Ward Edwards,?’ a twentieth-century American psychologist and Bayesian, and
Eric-Jan Wagenmakersﬁ-a—go further, and say that optional stopping is actually
a good idea for Bayesian analysis. One 2014 paper-3-9- ran a simulation a bit like the



one I ran above (but rather more sophisticated) and showed that if you stop
collecting data whenever your posterior probability or your Bayes factor—which
I’ll explain later, but for now you can think of it as p-values for Bayesians—drops
below a certain point, then you’ll still get (on average) the same probabilities as
you would if you'd waited until all your results were in, as planned. But you’ll get
them quicker, so you can get your drug to the market or your newly discovered
subatomic particle in the papers or whatever sooner and can move on to the next
thing.

Another, more technical advantage that Bayesian techniques have over
frequentist ones is that they don’t just reject or accept the null hypothesis—they
don’t just say yes or no to a hypothesis, but give degrees of belief to a range of
possible realities. That’s important because—in reality—there is no such thing
as a null hypothesis. Or rather, when looking at populations of human beings,
the null hypothesis is always, ultimately, false.

Imagine you do some study looking at the difference between two sections of
society. Let’s say it’s “Do redheads like soup?” again. If you look at two hundred
redheads and two hundred people with other hair colors, you’ll find some small
difference just by chance, and under the frequentist framework you must decide
whether that difference is large enough to reject the null.

But if you looked at every single redhead and non-redbead in the country,
there would be some difference. Even if it was literally that there was one more
soup-liking redhead per million. You'd be able to find something. So if you get a
large enough sample size, you’ll definitely be able to reject the null hypothesis.
And it will be a real result. The University of Chicago psychologist David Bakan
wrote in 1968:

Some years ago, the author had occasion to run a number of tests of
significance on a battery of tests collected on about 60,000 subjects from
all over the United States. Every test came out significant. Dividing the
cards by such arbitrary criteria as east versus west of the Mississippi River,
Maine versus the rest of the country, North versus South, etc., all
produced significant differences in means. In some instances, the



differences in the sample means were quite small, but nonetheless, the p

values were all very low.29

The great psychologist Paul Meehl said something similar—he once surveyed
fifty-seven thousand Minnesota high school students, asking them about their
religion, their leisure habits, their birth order, their number of siblings, their
plans after high school, and dozens of other subjects. In total, the different
responses could be mixed together in 990 different ways: Are students who like
cooking more likely to be only children, are students from Baptist families more
likely to join political clubs at school?—that sort of thing. Meehl pointed out
that when he sliced up the data, 92 percent of those possible combinations came
back with statistically significant correlations.*! And these are real differences,
with (presumably) some real, if multifaceted and complex, causes behind them.

Similarly, if you took thirty thousand redheads and thirty thousand non-
redheads, you'd find some difference in their soup-eating habits. It would almost
certainly be statistically significant. It would be real, not a false positive. But it’s
not clear that it would tell you something important—it might be a tiny
correlation, or it might disappear when you look at a slightly different group of
redheads.

The nature of frequentist statistics requires that you either reject the null or
you don’t. Either there’s a real effect, or there isn’t. And so, if you get a big

enough sample size, you’ll definitely find something. A Bayesian, instead, can

make an estimate of the size of the effect and give a probability distribution.!!

A probability distribution is a graph of the things that cox/d happen. If you
were to do a graph of the possible outcomes of a roll of a single six-sided die,
then youd have a graph with six equally tall bars on it, one marked 1, one
marked 2, and so on up to 6, for each of the possible outcomes. Each bar would
have a probability of one-sixth, or 16.7 percent, or 0.167, adding up to one,
because you’ve got to roll something. (Technically there should be a seventh bar,
“something weird happens,” which includes outcomes such as “the die lands
cocked ambiguously between two numbers” and “the die turns into a



mongoose,” but for the sake of argument let’s say we’re sure it’ll end up on one
number or another.) That chart would look like this:
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If you roll two dice, you get a different graph. It looks like the normal
distribution—there are six ways torollaseven (1 + 6,2+ 5,3 + 4,4+ 3,5+ 2,6
+ 1), but only one way to roll a two or a twelve (1 + 1, 6 + 6). So the probability
of each outcome is different:
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And if we were measuring some continuous variable, like height or weight,
rather than a discrete one like the score on a pair of dice, you'd have a graph of a
continuous curve, which might be a normal distribution or some other shape,
depending on what you were measuring. But just as with the others, the area
under the curve would add up to one, and if you wanted to measure the
probability of seeing some result, say “the percentage of men between 172 cm
and 178 cm tall,” you'd look and see how much of the graph fell between those

two points on the x-axis:
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This isn’t just a Bayesian thing, I should say. That distribution would make
perfect sense to Jacob Bernoulli.

What makes it Bayesian is that, first, you can use a probability distribution to
represent your subjective beliefs, based on the information you have, about your
best guess concerning some topic. And second, you can update it with new
information, to give you a new probability distribution.

Here’s what that means. First, you have your prior distribution. That is,
before seeing your data, you have a best estimate of the size of whatever the effect
is. Let’s use the “Do redheads like soup?” question again, and say that your best
estimate is that redheads eat exactly the same amount of soup as everyone else.
But you’re not sure. The real effect could be that they eat slightly more, or
slightly less, or, less likely but possible, that they eat loads more, or loads less. You
can be pretty much certain (probability = 1) that they eat some amount of soup
between “zero soup” and “all the soup in the world.”

The more confident you are that the real answer is close to some particular
value, the more probability you place close to that value. So if you’re very
confident, your probability distribution is tall and skinny; if you’re unsure, it’ll

be low and flattish.
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Then you examine some redheads’ soup habits. You find, to your surprise,
that they eat considerably more soup than the population average. The new data

is distributed around an average. The new curve is called your “likelihood.” L
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Then you multiply the posterior and likelihood together to make a curve that
is the average of the two previous curves. That’s your posterior distribution.
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What the posterior looks like depends on how strong your prior was, and
how good the new data is, in terms of sample size and effect size and so on. If
your prior is very strong—your curve is really tall and narrow—and the new data
is fairly weak, giving a likelihood curve that is low and wide, then the resulting
curve will look more like the prior. If your prior is weak but you’ve got really
good data, so your likelihood curve is tall and pointy, the new data will wash out
the prior, and the posterior will be more like the likelihood.

But you don’t have to say that you reject the null or accept the alternative
hypothesis or anything. You just say, “I think the true value falls somewhere in
this curve, with this probability for each point.” If the posterior curve is tall and
pointy compared to the prior, then you have something noteworthy and worth
following up.

Bayesians like Aubrey Clayton believe that this would mean that the old
problem of chasing significant p-values would be alleviated. You can always find
a statistically significant result if you chop your data up enough, or if you check
your results repeatedly, or if you just get bigger and bigger samples until you can
find tiny meaningless correlations. The nature of the scientific publishing
industry is that, often, you can get your paper published if you do find one of
those meaningless (or spurious) correlations; and the nature of academia is that
you need to get papers published if you want to progress in your career.
Removing the binary concept of statistical significance and replacing it with a
smoothly analogue “How big is this effect and how likely is it to be real?” chart
goes some way to avoiding some of those bad incentives and cliff-edge cutoffs.



To be clear: replacing frequentist analysis with Bayesian analysis would not
magically solve the many problems that modern science faces, and a lot of its
problems could be solved within a frequentist framework. (And I shouldn’t
overstate the problems of science too much, either—yes, there’s a lot of garbage
and bad incentives, but science is still the reason you live a longer, richer,
healthier life than your great-grandparents did, and the reason you can talk to
anyone in the world using a six-by-four-inch box in your pocket.)

Even Wagenmakers, the arch-Bayesian, agrees with that. “It’s not a magic
pill,” he says. “There are some core principles that hold whatever system you use.
Don’t cherry-pick, be honest. Garbage in, garbage out.” If scientists are hiding
their unsurprising null results, or journals aren’t publishing them, then the
scientific literature fills up disproportionately with “surprising” but false ones.
That means when you try to do a meta-analysis to assess the overall state of the
scientific consensus, you’ll get a false picture, and that’s true whether you
analyze the data with Bayesian or frequentist methods.

But one thing that a Bayesian approach would fix is the use of the p = 0.05
threshold. And that’s important, because—even though scientists often assume,
or pretend, or imply, that a p = 0.05 result should be taken as real—p = 0.05 is
sometimes actually evidence against your hypothesis. In the next section, Ill

explain why.

DENNIS LINDLEY'S PARADOX

“A one-in-twenty chance of seeing results at least as extreme as these” sounds like
a fairly high bar. That’s what p = 0.05 means, as we’ve been discussing, and
that’s the standard for declaring that you’ve found something. (Or for “rejecting
the null hypothesis,” anyway.) But a one-in-twenty threshold like that is, in fact,
surprisingly uninformative. In some scenarios, getting a p-value of around 0.05
is evidence against your hypothesis.

I’ll try to explain why. P-values look at how surprising the data is under one
hypothesis. “But in Bayes, you compare two hypotheses,” says Wagenmakers.
“And data can be surprising under the null, but even more surprising under the



alternative.” This is called Lindley’s paradox, after a 1957 paper by the
aforementioned Dennis Lindley, “A Statistical Paradox.”®2 But as Lindley
himself noted, it was present in Harold Jeffreys’s work twenty years earlier. And
it’s not, in fact, a paradox; it’s just that if you ask different questions of the data,
it will give you different answers.

The idea is that, if you performed some experiment a large number of times
—say a hundred thousand—and if, in reality, there is no true effect, you would
tend to see p-values randomly scattered around. ’'m going to use an example
from Daniél Laken’s Coursera course again: Let’s imagine you selected a group
of people and measured their IQ. You know the population IQ is 100 (by
definition). Let’s imagine that there’s no effect—that the population you’re
sampling from also has a mean IQ of 100. If you made a graph of the p-values
you found in your one hundred thousand experiments, it would look like this:
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Sometimes you'd see extreme results, sometimes you'd see less extreme ones—
that is, sometimes, just by fluke, you'd take a sample that had unusually high or
low IQs, but they wouldn’t be representative of the population; other times,
youd get a more representative sample. A p-value of 0.05 or below should
happen one time in twenty. So should a p-value of between 0.05 and 0.1, and
between 0.1 and 0.15, and so on. And you can be more specific: a p-value of
between 0.04 and 0.05 should only happen one time in one hundred, etc.

But now imagine there was a real effect. Say you’ve gone and measured the IQ
somewhere full of really clever people, and the average IQ there is 107. If you’ve
got a decent sample size, and there’s a real effect, you are very likely to get a really



low p-value. Now your p-values will cluster enormously very close to zero.
Instead of the flat graph above, you’ll see something like this:

100, 000 T
}5, 000

So, 000

25,000
o vav

o o1 0.3 0S5 o3 o099 |
P- VALVES

NUMBER OF P-VALES

Very few p-values get as high as 0.04. So given those two hypotheses—either
the population you’re measuring has a normal 100 mean IQ, or it has a much
higher 107 IQ—you’re much more likely to see a p-value of 0.04 under the null.
It’s surprising, yes—but much more surprising under your alternative
hypothesis.

Of course, those aren’t your only two hypotheses. The real average 1Q could
be 94, or 110, or anything else. But if you don’t have good reasons to favor any
particular hypothesis very much—if your priors are wide and diffuse—then a
just-as-about-significant result could well be better evidence for the null than
against it.

This doesn’t mean that the whole concept of p-values is bad. Kevin
McConway, a professor emeritus of statistics at the Open University (who
himself is Bayesian-sympathetic without being dogmatic about it) says it’s just
that the two frameworks are answering different questions, as we’ve been saying
all along. A p-value of 0.05 tells you, correctly, that your data is surprising, given
the null hypothesis. But it doesn’t tell you anything about how likely the null
hypothesis is, given your data. That’s just not within its gift.

The trouble is that, too often, researchers assume that a statistically
significant result means that they have good evidence for—or even confirmation
of—their hypothesis. And that’s just not what it means.

We should be clear that a large percentage of the problem is that a p = 0.05
threshold is almost laughably weak. If T were to put forward a hypothesis that my



new dice are loaded, and I rolled two of them and got two sixes, that would be
comfortably enough to declare statistical significance (p = 0.028). I play tabletop
war games quite a lot, and I promise you that rolling lots of sixes happens all the
time. (For my opponents.)

“From a Bayesian perspective, .05 is very weak evidence,” says Wagenmakers.
“The bar is set ridiculously low.”

Of course, if the problem is that the evidentiary standard is too low, one
obvious answer would be to raise the bar. That is precisely what Lakens was
proposing earlier—reducing the alpha level (that is, the p-value required to
declare statistical significance). In 2017, a group of scientists published a paper in
Nature Human Bebaviour™ calling for the standard level of statistical
significance to be redrawn at 0.005—that is, one in two hundred. It wouldn’t
eradicate Lindley’s paradox, but it would make the number of situations in
which it was relevant much smaller.

But the problem would remain that p-values don’t actually tell you what the
probability is that some hypothesis is correct. They would be stronger evidence,
sure, and if you followed Fisher or Popper you would perhaps be more confident
in your “corroboration” or your willingness to act as though the null had been
rejected. But you still wouldn’t be able to put a number on your belief, and if
you agree with Wagenmakers, Clayton, et al., that that’s what science is trying to
do, then you need Bayesianism, and if you need Bayesianism, you need priors.

But... where do you get them from?

FINDING YOUR PRIORS

Here’s a simple thought experiment, to see if you are, instinctively, a Bayesian or
a frequentist. (I've borrowed this example from Cassie Kozyrkov, a decision
scientist at Google.)** Flip a coin. Catch the coin, but don’t look at it.
(Hopetully, you’ve done it in the stylish way where you flip it with your thumb
off your curled index finger, and as you’ve caught it in the same hand, you've
slapped it down onto the back of your other hand. But however you’ve done it,

you now have a flipped coin, covered by your hand.) What’s the probability that



the coin is heads? Come up with your answer before you carry on. OK. Now get
someone else to flip a coin. They catch it. They ook at it. What’s the probability
that the coin is heads now?

If you answered “S0 percent” (or “0.5,” if you’re being proper about it), then
you're thinking in a Bayesian way. Probability for you is about your own
subjective beliefs, and about the information available to you. The coin could be
heads, or it could be tails, and you have no reason to believe either is more likely
than the other, so the probability is 50 percent. It doesn’t make any difference o
you when the other person looks at the coin—for them, the probability is now
100 percent or 0 percent. But for you, you have gained no new information, so
the probability is still 50 percent.

If you answered, “Either 0 or 100 percent,” or possibly “What the hell are you
talking about?,” then you’re thinking like a frequentist. There is a right answer, a
fact of the matter—either the coin landed heads up or it didn’t. It doesn’t make
sense to talk about the “probability” of a thing that’s already happened. (It also
didn’t make any difference when the other person looked at it. They now know
the true answer, and you don’t, but still, the true answer is there, and the
probability is one or zero.)

This is what we mean when we say that Bayesianism is subjective. Probability
and statistics should be seen as the assessment and measurement of uncertainty
—we don’t know whether X or Y will happen, but we can try to say how likely
they are, given what we know about the world—and what I know about the
world, and therefore how likely I think they are, might be rather different to
what you know.

But there are two kinds of uncertainty. Aleatory uncertainty is the
uncertainty in an unknowable future—aleatory coming from the Latin word
alea meaning “a die.” (“lacta alea est,” as Caesar said, according to Suetonius, as
he crossed the Rubicon and marched on Rome—“The die is cast,” meaning that
the consequences of his decision were coming, whatever they were, and they
were unknowable.%2)

So before you flip a coin, there’s aleatory uncertainty over whether you’ll get
heads or tails. When you get on a plane, there’s aleatory uncertainty (though not
very much) over whether it will land safely. When you drop your toast, in the



second or so before it lands, there’s aleatory uncertainty over whether or not it
will land butter side up or down.

But then there’s epistemic uncertainty, from episteme, the Greek word
meaning “knowledge.” That’s what Cassie Kozyrkov was demonstrating above.
If you flip a coin, then you catch it, but don’t look at it—then there’s no aleatory
uncertainty. The result is there, it’s happened, that’s it. Still, though. You don’t
have any new information. As far as you’re concerned, the question is no closer
to being resolved than it was before.

Similarly, if someone you know is on a plane, there’s epistemic uncertainty
over whether it’s landed or crashed (although I slightly regret this choice of
example because planes are quite incredibly safe). Once you’ve dropped your
toast, but before you look under the table to retrieve it, there’s epistemic
uncertainty over whether it’s smeared butter over your kitchen floor.

Questions of real-world facts have epistemic uncertainty. What’s the
population of Switzerland? I don’t know, but I'd say probably about 10 million.
I’'m 90 percent sure it isn’t lower than 4 million or higher than 30 million. If I
were to draw a probability distribution, that would be my prior: a curve with a
peak at 10 million, with only 5 percent of my probability mass above 30 million
and another 5 percent below 4 million. It'd look something like this:
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(Pve just looked it up and the population of Switzerland on January 1, 2022,
according to Eurostat, was 8,736,5 10.%¢ Now my probability density function
shrinks to a needle-sharp point centered around that figure.) With questions
with discrete answers, like “What is the state capital of Georgia?,” you can put



probabilities on all the different answers: 60 percent on “Atlanta,” 35 percent on
“Thilisi,” that sort of thing.

All of which is fine. Daniél Lakens, certainly, would agree with us so far. And
when we come back to the idea of Bayes’ theorem as decision theory, and the
more informal use of Bayes as a model for predicting the future and changing
our mind and things like that, then this is really the only way to go about it. To
the extent that the brain is a Bayesian machine—another idea we’ll come back to
later—this is pretty much what it’s doing, when it predicts the world around
you and updates it with new information from your senses.

But in science, how does it work? Where do you get these priors from? Are
you allowed to just pluck them out of the air? Do you go, “I dunno, I reckon it’s
about 40 percent likely that this vaccine prevents COVID,” and work from
there, or is there some more sophisticated method?

Well, there are several, of course. The most obvious is just to say that we don’t
know. If you literally have no idea whether the population of Switzerland is one
or the entire population of Earth, then you put equal probability mass on each
possible answer, and your prior is as flat as your prior for whether you’ll roll a six
or a one on a six-sided die. “A uniform flat prior doesn’t assume anything,” says
Jens Koed Madsen. “Frequentists have that prior, although they don’t want to
talk about it. I say to my hardcore frequentist colleagues that their subjective
prior is 0.5, and where does that come from? It’s not explicitly specified in your
theorem, but it’s implied.”

There are problems with uniform priors. The main one is Boole’s objection,
which we heard in chapter 1: that a uniform prior in one sense gives you a
nonuniform one in another. The example we discussed was, predictably enough,
an urn filled with balls, either black or white. If you have a flat prior on the total
number of black balls in the urn, then any given mix of black and white balls is
equally likely. (If there are only four balls in the urn, you have three possibilities
—two black, one black, and zero black—and they’re all equally likely.)

But if you assume that each ball is equally likely to be black or white—a flat
prior on the probability of drawing a white or black each time—then your prior
probability favors (very strongly, if there are lots of balls) a roughly fifty-fifty mix

in the urn as a whole.



Harold Jeftreys suggested a route around this problem for many cases—a
prior probability distribution that looks like a U, with the probability mass
concentrated heavily at the extremes. (That is, you start out thinking that
whatever you’re looking for either happens almost every time, or happens almost

never.)
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As with the flat prior, it’s non-informative—that is, if you get some new data,
your posterior probability will look pretty much like that data, without any real
input from your prior. But it’s also less vulnerable (though not completely so) to
giving weird paradoxes where total ignorance in one sense gives you very strong
prior beliefs in another.

Those sorts of priors are useful when you don’t know anything at all. But
total ignorance is unusual. You might not know very much about Switzerland,
but you'd probably be pretty confident that more than ten people live there, and
fewer than a billion. So most of the time you have some prior information that
you’d want to include.

“In my previous work,” says Madsen, “we were looking at fishing behavior in
Indonesia. We wanted to understand the behavior of these fishermen, so we
spoke to them, and to local NGOs and experts. And it seems kind of silly to me
to say, ‘I couldn’t possibly integrate these experts into my prior, it’s not data.’
Imagine if you had some experts who looked at your model and said [about
some aspect of it], ‘Never, ever, has that happened,’ then it seems arbitrary to set
that prior to 0.5 just because it’s the data thing to do.”

But that means making subjective decisions about your prior. If you think it’s
more likely than not that Indonesian fishermen will use trawl nets rather than
long lines, or if you think it’s more likely that they’ll catch tuna than octopus,
then you have to say, “And I think they are 1.5 times as likely” or whatever. And
that will influence the results you present when your actual data comes in.



Doesn’t that undermine the whole point of doing the actual data collection?
No, says Eric-Jan Wagenmakers. “You can check the robustness of your
conclusions by checking different prior distributions.” So you might try asking
whether your conclusions stand up if you think tuna are 1.7 times as likely to be
caught, or 2.4 or 1.3.

“Usually,” he says, “it doesn’t really matter as long as it’s reasonable. And
most people agree if it’s reasonable or not. And usually, because the data will just
tell you a clear story, it doesn’t matter so much.” If it does matter a lot, then your
data probably isn’t very good.

Andy Grieve, the pharma statistician, tells a similar story. “For very early
studies, or internal ones, we'd use subjective information,” he says. “You can
elicit information from experts, for instance. We'd use that in internal decision-
making.

“But it’s pretty unlikely that you’d be allowed to do that in a submission to a
regulatory authority, so in bigger trials we’d use what information we have on
the drug, or similar drugs, from historical data.”

Lakens, the frequentist, is very skeptical of all this, and in fact expressed
doubt that anyone used the results of previous experiments to form the priors of
the next ones. “Did you manage to find a scientist who ever used Bayes’ theorem
to actually update their prior in practice?” he asked me. “As in, they published a
paper in 2018, and then actually used the result from the 2018 paper as a prior,
collected data, and reported an updated quantified posterior belief? Anyone,
ever, updating their belief a single time, in a published paper?”

But Wagenmakers disagrees. “Of course we use the posteriors!” he says. “If
you didn’t, you'd be willingly throwing away data. Money is on the line, in
industry, so of course you don’t.”

Grieve, who did work in industry, says that’s what his pharmaceutical
research did all the time. It’s just more efficient, he says. Normally, scientists pool
all the studies on a subject and do a “meta-analysis”—they use all the data from
all of the studies, combining their p-values and effect sizes and so on to create a
consensus. For Bayesians, though, that’s just part of the daily work. You
incorporate all the studies that were done before. “It allows us to leverage all the

data we’ve collected in the past,” Grieve says. “It incorporates its own meta-



analysis. The current standard way of creating a prior distribution from existing
data, in fact, is called a meta-analytic prior.”

It’s just a fact that Bayesian procedures make more efficient use of the data
you have. “If you’re not using a proper, informative prior, you’re leaving money

on the table,” said one Bayesian, the US epidemiologist Robert Weiss. 2 If there
is data, information, that you could use and which you’re choosing not to—
your eventual conclusions will be less certain than they otherwise would have
been. There might be good reasons not to use the existing data, but not using it
will make your use of any new data less efficient.

One problem is that you could, in theory, skew your results by taking strange
priors. For instance, if you were running a pharmaceutical trial, you'd have a
treatment group, getting your drug, and a control group, getting a placebo or
standard care. If you dishonestly (or incompetently) arranged your prior
expectation of the effect in the control group, so it looked much worse than it
should have been, then it would make the apparent effect in the treatment group
look much better.

“That’s the big concern,” says Grieve. “If when you collect your data there’s
evidence that your control arm is very different from what you’ve seen before,
from your historical data.” It’s not that pharma companies engage in that sort of
bad behavior regularly, he says, “but there’s always the odd bad egg.” The way to
avoid it, he says, is “a mix of distributions for the prior, which automatically
down-weights the historical information if there’s a big difference between the
historical data and the current data.”

It’s not that finding a prior is a trivial or obvious task. There are choices to be
made, and (even though one school of Bayesianism describes itself as “objective”)
they can be debated. If you disagree on how trustworthy a study is, or whether to
include expert testimony, then you might disagree on your prior probability
distribution.

But that doesn’t mean people have to pluck priors out of the air. There are
reasonable ways of finding them in different circumstances. And then, of course,
if your data is any good, your priors will be rapidly washed away.



YOU'RE NOT BEATING A DEAD HORSE IF THE
HORSE IS STILL WINNING THE RACE

There’s a temptation when you’re writing about controversial topics to be
Deeply Wise, and to say, ah, yes, people are angry, but both sides have very fine
people on them, very fine people on both sides. And to be fair, that’s not
necessarily the wrong attitude to take. The Bayesian-frequentist row is
remarkably bitter—I had one person describe someone on the other side as “a
car salesman, out to win souls for the cause.” Someone else described another as
“the Donald Trump of methodology.” (Very fine people on both sides.)

As Andy Grieve said, perhaps some of it is for show. Even Dani¢l Lakens,
whom Bayesians think of as the arch-frequentist, says that “often frequentist
approaches are best, but sometimes you do have enough prior information to say
we can use Bayesian statistics, and in those situations it has clear advantages.
That’s the nuanced position, but you’re not going to write a book saying that.”

Cassie Kozyrkov, the Google data scientist, in her blog post about whether
you’re a Bayesian or a frequentist, has a subheading. “So, which one is better?”
and her answer is: “Wrong question! The right one to choose depends on how
you want to approach your decision—making.”f@

She also points out, probably rightly, that during her graduate studies at
Duke University—“which is to Bayesian statistics approximately what the
Vatican is to Catholicism”—the loudest voices shouting about how great
Bayesianism is weren’t the professors but the students, mainly because the basic
Bayesian ideas are easier to grasp.

Sophie Carr, the statistician who runs the consultancy firm called Bays, is
surprisingly nondogmatic about it as well. “I talk about frequentist and Bayesian
statistics like rugby,” she says. The two codes of rugby—Ileague and union—have
subtly different rules, and fans of the two different disciplines are loudly
adamant that their version is the best. (For non-Britons, I think it’s fair to say
that league is a more working-class game, played mainly in the north of England;
union is played more in the south of England, and in Wales, Scotland, and
Ireland, and in England, at least, is more middle-class.)



“Leeds Rhinos were my team, and they’re league,” says Carr. “Then I came
south and played union for Bath.” You can switch between the two, and neither
is better than the other, although each has pros and cons. Her analogy with
frequentism and Bayesianism is obvious.

I am tempted, therefore, to say, “Of course this debate is highly charged, lots
of emotions running high, but both sides make good points!”

It’s obviously true that frequentist methods are perfectly good in lots of
scenarios—Lakens is right that it would have been pointless including prior
probabilities on the search for the Higgs boson, for instance, when you’re
dealing with p-values that you'd only see one time in 11 million or something if
there wasn’t a Higgs to find. DNA sequencing in biology—genome-wide
association studies looking at the entire length of the genome in hundreds of
thousands of people, and comparing them with phenotypic outcomes like
diseases, height, intelligence, whatever—might not need Bayes either.

It’s also obviously true that taking a Bayesian approach wouldn’t, on its own,
solve the problems that science faces. If journals still preferentially publish novel,
surprising results over unsurprising ones, and if academics are still operating on a
publish-or-perish model and need to get papers into journals if they’re going to
succeed, then there will still be perverse incentives in academia. It might make
some difference if the statistics are analyzed with Bayesian methods rather than
frequentist statistics—you can’t p-hack if you’re not using p-values, so at the
very least we'd have to come up with a new name for it—but it won’t solve the
issues. If scientists won’t share their data or their code for others to check, it
doesn’t matter whether that data was analyzed using Bayes factors or not.

And—to continue the theme—it’s a/so obviously true that you can solve, or
at least ameliorate, a lot of these problems within a frequentist framework. Some
academics I know advocate something called Registered Reports, in which
journals agree to publish papers on the strength of their methods, before the
data is collected, so then, whether the researchers find exciting, headline-worthy
results or boring, null results, those results will go on to become part of the
scientific record. Several relatively major journals have signed up for Registered
Reports, and I think they’re a good idea—they remove the incentive to slice the



data until you get a positive result, and they remove the problem of publication
bias. They represent a helpful move, whether papers are Bayesian or frequentist.

And, as mentioned several times, a lot of the main problems with frequentist
models are that the p = 0.05 threshold is laughably weak, and you could
ameliorate those problems significantly by moving to p = 0.005 or something.
Yes, there’d be a lot of studies that wouldn’t get published (or, ideally, would be
published with the headline “We Looked but Didn’t Find Anything”).

Another idea would be simply getting rid of the “academic journals” model
altogether. I spoke to another psychologist, Marcus Munafo at Bristol
University, about this, and he thinks that essentially the idea of the academic
journal being the repository of record—the place where the scientific record is
kept, the official store of science—is outdated. “The idea of three-thousand-
word articles published in a journal is three hundred years old,” he told me.
“Research is more complex now, and we have the technology to present it all and
the moving parts.”

In fact, there is an alternative model already in place— Alexandra Freeman of
the Winton Centre for Risk and Evidence Communication at Cambridge
University has launched a program called Octopus. It is a free repository for
hypotheses, data, code, and methods. Freeman, a former journalist, told me,
“When I moved from the media to academia, it struck me that academics are
being given the exact same incentives as journalists—they’re pushed toward
telling good stories, instead of doing good science. Journals encourage people to
have high-impact publications, which they define as having high readership,
short and to the point, carrying a message. It acts directly against what you
actually want in a primary research record—which is everything there, in detail,
so people can follow it.”

Instead of scientists doing research and then, when it is completed months or
years later, spending another few months or years hawking it around to
publishers in the form of a written piece, Octopus is “designed with a completely
different incentive structure,” she says. “You publish your hypothesis to
Octopus, then you come up with a method to test that hypothesis, and you link
that to it. Then anyone can carry out the protocol you’ve described.” Then you
publish the data on it, and anyone can analyze the data. Meanwhile, journals can



carry on disseminating interesting work—“They can be essentially like New
Scientist or Scientific American. And they can have a paywall if they like. But
Octopus is where you share the actual research, for free.”

I understand people who say something like “Why are we spending so much
time arguing over Bayesian versus frequentist statistics? Our entire scientific
publishing system is screwed, academics’ incentives are to churn out pap rather
than uncover truth; it seems silly to worry about whether they do that with
Bayes or with p-values.” And there’s also a sense of weariness, I think, in
academic circles. Are we stzll arguing about this? Surely we’ve got better things
to worry about now? Haven’t Bayesians made their point?

But I do want to nail my colors to the mast to some extent. For one thing,
even though Bayesian methods are far more common and widely accepted than
they were fifty years ago, the standard techniques for investigating a scientific
question are still frequentist. “Go on Google Scholar,” says Aubrey Clayton,
“and search for ‘p-value’ or ‘significance’ or whatever. It’s still the common
language. There are tens or hundreds of thousands of articles per year. Maybe
the tide is shifting, but the dominant mode is still frequentist.” People get
annoyed at Bayesians for banging on about it, he says, “like we’re beating a dead
horse, rehashing this debate about Bayesianism. But David Bakan had this great
line, “You’re not beating a dead horse if the horse is still winning the race.””

And Bayes does have advantages. For one thing, it definitely does solve, or
ameliorate, some of the issues of the replication crisis. Going back to the Lindley
paradox: under frequentist analysis, a statistically significant result can actually
be evidence against your hypothesis. Because Bayes forces you to compare the
likelihood of seeing a result between the two competing hypotheses, it’s much
harder to say, “And this just-about-significant result supports the headline
claim!” when your analysis shows you that it doesn’t.

In theory, at least, some of the more direct HARKing methods, such as
optional stopping, are not a problem for Bayesians. And, of course, if you’re
doing research into some unlikely hypothesis, such as psychic abilities, then you
have to choose a prior that reflects that unlikeliness, and as a result the strength
of evidence that you need will be greater.



The other advantage is that you get to make use of all the data available to
you. Yes, in cases like the Higgs boson you have so much data that your prior
doesn’t matter. But in, say, vaccine studies, where you’re trying to see how many
people catch the disease in your control group vs. your treatment group, it might
take months or years to obtain enough data to get below a certain significance
threshold. But if you’re allowed to use data from your earlier trials, and include
them as prior probabilities, it gets you there more quickly. Not using a good,
informed prior is leaving money on the table, to return to the Robert Weiss
quote.

But Eric-Jan Wagenmakers makes a point that I also agree with, which is that
Bayesianism is aesthetically more pleasing. “There’s something in Bayes,” he says.
“Everything is coherent; you don’t have internal inconsistencies. In frequentism
you can find all these anomalous cases, and people say it’s an anomaly but only
in this situation, but it always feels ugly.

“Fundamentally, it’s a matter of elegance, of aesthetic.”

There’s a wider point too. Outside of science, this is just how decision theory
works. “What are we trying to do with classical statistics?” asks Wagenmakers.
“We’re trying to make a decision between two hypotheses. How could we do
that, with Bayes? We'd specify our utilities and our prior probabilities, compute
our evidence, and take the decision that maximizes our subjective utility. In
economics, we'd say that’s the normative way of doing it.

“But the p-value is a really bastardized version of that. No priors, no utility—
that’s all implicit. How that can be accepted as good decision theory is beyond
me. No one would use it in human decision theory.”

That might not have made a lot of sense, since I haven’t yet explained what
utility is. But the idea of Bayes as the underlying system for all decision-making
is what we’re going to look at next.

I. T strongly recommend Lakens’s free Coursera course online, “Improving Your Statistical
Inferences,” if you want to know more about this stuff.

I1. I should note that frequentists aren’t idiots, and they have thought of all this stuff. You can
estimate effect size within the frequentist framework, you can do “equivalence testing” that lets



you determine whether an apparent effect is big enough to pay attention to, and, as we’ve
discussed before, rejecting or accepting the null hypothesis isn’t final. But it’s somewhat ad hoc,
not built into the system as it is with Bayes.

III. This is an annoying thing statisticians have done, to take a word that in everyday language

means exactly the same as “probability,” and give it a technical meaning that is different in a
subtle but important way, so everyone gets confused. Again. Like they did with “significance.”



CHAPTER THREE

Bayesian Decision Theory

ARISTOTLE AND GEORGE BOOLE

Many readers will probably be familiar with logical syllogisms. The classic: All
men are mortal; Socrates is a man; therefore Socrates is mortal.

This is deductive reasoning. If you accept the two premises (All men are
mortal; Socrates is a man) then you have to accept the conclusion (Socrates is
mortal) on pain of contradiction. The syllogism is valid, which is not the same
as being true: it just means that the conclusion follows from the premises, not
necessarily that the premises are true. For instance, “Plants are good for you;
tobacco is a plant; ergo tobacco is good for you” is a logically valid syllogism, but
it’s factually incorrect.

The idea of deductive reasoning usually gets credited to Aristotle.t The
physicist and probability theorist E. T. Jaynes, who plays roughly the same role
in the cult of Bayes as St. Paul does in Christianity, says that pretty much the
whole of Aristotelian logic can be boiled down to “the repeated application of

two strong syllogisms,”-z- to wit:

If A is true, then B is true.
A is true.

Therefore B is true.



And the opposite:

If A is true, then B is true.
Bis false.

Therefore A is false.

You can replace A and B with any propositions you like. If burbles are wurbles,
then Abraham Lincoln was the forty-fifth president of the United States;
burbles are wurbles; therefore Abraham Lincoln was the forty-fifth president of
the United States. If fish could fly, my grandmother would be a bicycle; my
grandmother is not a bicycle; ergo fish cannot fly.

As before, these statements are valid—if you accept the premises, you must
accept the conclusion—but not, necessarily, correct.

You can add various elements to it: “If both A and B are true, C is true; A and
B are true; ergo C is true” is a more complicated form of the first syllogism. “If A
is true, both B and C are true; C is not true; ergo A is not true” is a more
complicated form of the second. But those are the fundamental actions.

In the nineteenth century, George Boole, the aforementioned scourge of the
uninformative prior, introduced the use of algebra to codify the whole deductive
reasoning thing. So A V B means “both A and B are true” (conjunction). A A B
means “at least one of A and B is true” (disjunction). A means “A is not true”
(negation). A — B means “A implies B,” or “if A is true, then B is true”
(implication).

Then there are a bunch of axioms. If A is true, 7A cannot be true. If A A B is
true, B A A is true. That sort of thing. From those relatively simple atoms, you
can build the whole world of propositional logic.

Aristotelian (or Boolean) logic has a simple job: it spits out a truth value. At
the end of a sequence of logical statements, it will end up saying either “A is
true” or “A is not true.” And even though the bits from which it is made are
relatively simple, you can do some complicated things with it.



Very complicated, in fact. The Boolean algebra can be represented as logic
gates. A logic gate is basically a simple computer chip with two inputs, and
depending on whether those inputs are active, it sends an output.

Let’s imagine the logic gate is wired up to some simple inputs: a light sensor
and a microphone, say. The light sensor fires if it’s above a certain light level; the
microphone fires if it’s above a certain decibel level. The gate’s output is attached
to an LED.

If you attach them to an AND gate, then the gate will give off a signal and
light the LED if and only if both the light sensor and the microphone are firing
—so if it’s bright AND noisy.

If you attach them to an OR gate, the LED will switch on if it’s noisy OR
bright (or both).

There’s also a NOT gate, which fires if it’s NOT receiving some input—so
you could attach it to the light sensor, and it will keep the LED lit as long as it
hasn’t got any light on it.

Those gates do exactly what the Boolean operators do. An AND gate (which
in our example would say, “If [light] and [noise] are true, then [LED is on] is
true”) is the same as the logical conjunction, V. It’s a syllogism. An OR gate (“If
[light] or [noise] is true, then [LED is on] is true”) is the same as the logical



disjunction, V. A NOT gate (“If [light] is not true, then [LED is on] is true”) is
the same as the logical negation, .

Those simple systems are enough to do all the calculations that a fully
functioning digital processor can do (although you also need some memory to
build a real, working computer). In fact you can do it even more simply, with a
NOT AND (or NAND) gate, which always fires #nless both its inputs are true
—you can use NAND gates to build all the gates described above. For instance,
an AND gate could be made by using a NAND gate with a split output that
then goes into a second NAND gate. If both inputs to the first gate fire, then it
won’t fire; which means that the second one will.
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I am writing this on a computer whose CPUs could be entirely simulated

using NAND gates. Propositional logic is powerful stuff. George Boole went so

far as to describe its operations as “the laws of thought.”?-

But it’s also limited. If we want to work out whether something is true or
not, usually we can’t work it out with logical certainty. We might want to say, “If
it is Friday, my children will have fish for their school dinners; it is Friday; ergo
my children will have fish for their school dinners.” If we accepted the premises,
believed them to be unarguably true, then we would be forced to accept the
conclusion. But we can’t be sure of the premises. Perhaps the school has run out
of fish and they’re having lasagne today. Perhaps we’ve got our days wrong and
it’s actually Thursday.

Or, to cite Jaynes: A policeman, late at night on a deserted street, hears a
burglar alarm coming from the broken window of a jewelry store. A masked
man emerges from the broken window carrying a bag; upon inspection, the
policeman finds the bag to be full of gold and gems. The policeman assumes the
man to be a thief, and most of us would agree that that’s the likeliest
explanation. But there’s no logical certainty about it. “It might be, for example,”
says Jaynes, “that this gentleman was the owner of the jewelry store and he was



coming home from a masquerade party, and didn’t have the key with him.
However, just as he walked by his store, a passing truck threw a stone through

the window, and he was only protecting his own property.”-z*- It doesn’t sound
very likely, I admit, but you can’t prove it’s not true.

And yet most of the time, this is the sort of reasoning we have to make do
with. We can’t do the full logical syllogism. We must make do, as Jaynes says,
with “weaker” ones. Instead of “If A is true, B is true; B is false; therefore A is
false,” we have to make do with things like:

If A is true, B is true.
B is true.

Therefore A is more plausible.

If it will rain by 10 a.m., then there will be clouds in the sky before 10 a.m. It’s
9:45 a.m. and there are clouds in the sky. Therefore, it’s more plausible that it
will rain at 10 a.m. This seems a decent analogue of how we actually think and
reason.

It’s not just that we use new information—we also base our reaction to that
information on our prior experience. The brain “makes use of old information
as well as the specific new data of the problem,” says Jaynes; “in deciding what to
do we try to recall our past experience with clouds and rain, and what the
weatherman predicted last night.” If, Jaynes says, every night the policeman
went out, he saw a masked man emerging from the broken window of the
jewelry shop, and every time it turned out to be the lawful owner, then pretty
soon that policeman would stop paying attention. “Thus, in our reasoning we
depend very much on prior information to help us in evaluating the degree of
plausibility in a new problem,” says Jaynes. “This reasoning process goes on
unconsciously, almost instantaneously, and we conceal how complicated it really
is by calling it common sense.”

So we have prior information; we get new information; we combine the two
together to form a revised picture of the world. Doesn’t that sound familiar?



Almost... Bayesian?

Yes, it does. And what Jaynes (and Jeffreys, and modern decision theorists)
would say is that Bayes’ theorem is, indeed, how reasoning works—not just our
common sense, but all decision-making under uncertainty. And in fact they
would argue that Aristotle’s and Boole’s idea of logic is just a slimmed-down,
special-case version of Bayesian reasoning—one in which the probabilities are
set, implausibly, to one or zero, absolute certainty. Bayesian logic, on the other
hand, lets us deal with all the shades of gray in between.

BAYES AS THE HEART OF DECISION-MAKING

Classical logic deals entirely in ones and zeros—which is fine, if we are using it to
prove logical statements, or to run central processing units. But if we want to
talk about probabilities—making decisions under uncertainty—we need the in-
between numbers.

More than that, we need—or, at least, we want—a mathematical framework
for moving between those numbers, for changing our beliefs about something.
It will not come as a surprise to learn that the appropriate framework for doing
so is Bayes’ theorem.

As David Manheim, an academic and superforecaster (don’t worry about
what that is if you don’t know; I will explain it later), told me: “Scientists can be
frequentists or Bayesian; decision theorists cannot. There is no way to do
decision theory with frequentist math.”

I’'m going to take a simple example from a guy called Eliezer Yudkowsky, who

deserves a book of his own,! but who will only be described here as the author of

Rationality: from AI to Zombies, where this little thought experiment appears.-s-

Imagine there’s a state lottery where you live. The lottery draws six numbers out
of a possible seventy; you need to have all six numbers to win the jackpot.

There are, therefore, 131,115,985 possible combinations of numbers, and if
you have one ticket, you have a 1-in-131,115,985 chance of winning.

That’s your prior probability, and it’s not huge. But imagine now that you
also plan to cheat. You have a box that beeps when you give it the correct,



winning combination of numbers! Now, admittedly, you have a lot of numbers
to put into it, but in theory, if you keep hammering away, one number a second
for four years, you'll find the right number.

There’s a drawback, though. Your box also beeps at random, one time in
four, even when the combination is wrong.

So you run a combination through the box. It beeps! What do you do? Do
you run off and buy a ticket? After all, there’s only a 25 percent chance of a beep
on any given wrong number!

Hang on though: you’re forgetting your priors. In Bayesian terms, your data
—a beeping box—is four times more likely under the hypothesis “This is the
correct combination” than under the hypothesis “This is the wrong
combination.” That is your likelihood ratio, which we’ve talked about before:
4:1.

But if you were to run your beep-box machine on all 131,115,985 possible
combinations, it would beep roughly 32,778,996 times. Only one of those
combinations is actually correct. So you take your prior probability
(1:131,115,985) and your likelihood ratio (4:1). Then you multply
1:131,115,985 by 4:1 and you get a new posterior probability—4:131,115,985,
or onein 32,778,996.

To think of it another way, you have your prior probability distribution, with
every single possible combination having exactly 1/131,115,985 of the available
probability mass. You then do your box thing. If it doesn’t beep on a number,
you can be sure it isn’t the winning combination, so you can reduce the amount
of probability mass you put on that number to zero.

(One thing, which we’ll come back to. I have assumed that I could be certain,
if the box didn’t beep on a given combination, that that combination was not
the winning one: I assigned it zero probability. That’s cheating, really. I should
have assigned it some negligible but non-zero amount—perhaps the box is
faulty! Or perhaps I missed the beep! But I shall do it as Yudkowsky did, in order
to keep the math simple.)

The box beeps (on average) on one combination in four. So you push your
probability mass onto those combinations. Each of those numbers now has
1/32,778,996 of the probability mass.



If you run the box over those numbers again, and remember the false
positives are random, it will once again beep for the correct combination, but it
will also beep for (on average) 8,194,749 wrong combinations. You'd have to run
a ticket through the box fourteen times, with it beeping each time, in order for
that ticket to be /zkely the right one.

These are just the rules. You can’t, as Yudkowsky puts it, “stop on the first
combination that gets beeps [ten times in a row], saying ‘But the odds of that
happening for a losing combination are a million to one! I’ll just ignore those

ivory-tower Bayesian rules and stop here.””¢ If you did, you would still have less
than a 1 percent chance that you were holding the right ticket.

Now, it might well be a good bet to buy that ticket—that depends not just on
the probability of winning the prize, but on the value of that prize if you do win
it; decision theory needs to talk about the utilities of the various outcomes as
well as the probabilities of them, which we’ll come back to—but the fact is it’s
still not very likely to be the right ticket.

There’s an idea in thermodynamics called the Carnot engine, after the
nineteenth-century French mechanical engineer Nicolas Carnot. It’s an idealized
heat engine: the most efficient engine theoretically possible using a heat-
exchange system. Any real engine—a steam engine, an internal combustion
engine—will be less efficient, because heat will be lost to the environment, so it
will do less work for a given amount of energy than a Carnot engine would. But
as your engines become more efficient, they approach the efficiency of Carnot’s
model.

Bayes’ theorem is to decision theory what the Carnot engine is to
thermodynamics. The analogy is Yudkowsky’s again,z and it’s a solid one. You
can’t run a real car on a Carnot engine. You can’t build one. It’s an idealized,
imaginary model, to which any real engine can only be an approximation. But
the real engine is only working insofar as it’s approximating the Carnot engine,
and it’s not working insofar as it’s not.

Similarly, you’ll rarely be able to apply Bayes’ theorem perfectly to real-world
situations. You can’t perfectly determine the prior probabilities of, say, Russia
invading Ukraine, or the local shop having run out of pink grapefruit squash.
And you can’t perfectly determine the strength of the evidence that you get to



update those priors—if satellite images show a buildup of Russian armored
divisions in Crimea, how much should you update? If the Safeway website says
pink grapefruit squash is in stock, how much should you trust it? Your estimates
of all these probabilities will be approximations.

But when you make decisions—when anyone does, or when any agent or
decision-making process does—you do so by approximating Bayes’ theorem. A
decision made under uncertainty is good insofar as it approximates Bayes’
theorem and bad insofar as it leaves Bayes behind.

What E. T. Jaynes demonstrated in his posthumously published work
Probability Theory: The Logic of Science was that by using Bayes’ theorem, as we
have above, we can do all the things we can with Aristotle’s logic, and more.
“Aristotelian deductive logic is the limiting form of our rules for plausible
reasoning,” says ]aynes.-S-

That is, if you use only the probabilities one and zero, you can do all the same
logical moves within a Bayesian decision framework as you can in Boolean or
Aristotelian logic. “If men are mortal with probability one, and Socrates is a man
with probability one, then Socrates is mortal with probability one.” Or, to revisit
our generalized versions:

If the probability of A is 1, then the probability of B is 1.
The probability of A is 1.

Therefore the probability of B is 1.
And the opposite:

If the probability of A is 1, then the probability of B is 1.
The probability of B is 0.

Therefore the probability of A is 0.



All the operations we looked at in Aristotelian/Boolean logic can be carried out
in this mode, if you limit yourself to using ones and zeros. The rule that A and
not-A cannot be true at the same time is the same as saying, “The probability of
either A being true or A not being true is one.” The “logical conjunction,” the
AND gate, can be represented as “p(A A B) = p(C),” where A and B are the
inputs and C is the output. (Or, to put it in plain language, the probability that
both A and B are true equals the probability that C is true; the probability that
the light sensor and the microphone are both signaling is the same as the
probability that the LED will be switched on.)

But what Bayesian probability theory can also do, says Jaynes, is give us
something like common sense. Remember, most of the time—almost all the
time, really—we can’t do deductive, Aristotelian logic; we can’t say, “If A then B;
A, therefore B.” We have to say, “If A then B; B, therefore A is more plausible.”

For instance: If it has rained overnight, the pavements will be wet in the
morning. The pavements are wet. Therefore, it’s more plausible that it’s rained.
It’s not definitely true; perhaps your sprinklers were on. But the hypothesis 7
has rained is more plausible, given the evidence, the pavements are wet. And the
great thing about Bayes’ theorem is that you don’t just have to say “it’s more
plausible”: you can put numbers on exactly how much more plausible it is.

So let’s say that when it rains, you see wet pavements 80 percent of the time.
When it doesn’t rain, you still sometimes see wet pavements—say, your
sprinklers come on 20 percent of the time. You’re four times more likely to see
wet pavements under the hypothesis 7t has rained than under the hypothesis 7
bas not rained. That’s your likelihood ratio, and that tells you how much to
update your beliefs—how much more plausible the “rain” hypothesis is, given
the “wet pavements” evidence.

That’s not all we want to know, though. We want to know how probable it is
that it rained. And for that (once again) we need prior probabilities.

Let’s say that at this time of year, it rains 33 percent of evenings. That’s your
prior probability. Now let’s imagine that you see wet pavements one morning.
What’s the probability that it was raining last night?

Imagine you watch the pavements for one hundred mornings. On average, it
will have rained thirty-three times, and not rained sixty-seven times.



On the sixty-seven mornings when it hadn’t rained, you’ll have seen wet
pavements 20 percent of the time—13.4 mornings, on average—and dry
pavements the remaining 53.6 mornings.

On the thirty-three mornings when it had rained, you’ll have seen wet
pavements 80 percent of the time—26.4 times—and dry pavements 6.6 times.

So if you have wet pavements in the morning, it means last night was either
one of the 13.4 non-rainy nights with wet pavements or one of the 26.4 rainy
nights with wet pavements. Which means the probability of it having rained last
night is now 26.4 divided by (26.4 + 13.4) or 39.8, or 0.66.

As with Aristotelian logic, this is just what you get if you accept the premises.
If you agree that rainy nights happen 33 percent of the time, and that wet
pavements happen 80 percent of the time after rainy nights but only 20 percent
of the time after dry nights, then those numbers ineluctably lead you to agree
that, if the pavements are wet, there is a 66 percent chance that it rained last
night. It’s as unavoidable as the “All men are mortal; Socrates is a man; ergo
Socrates is a mortal” syllogism. Except you can use it not merely to say, “This
statement is true or not true, given these premises,” but also “This hypothesis is
this probable, given this evidence.”

Of course, in reality you won’t always have the precise numbers, and there’s
more than just one piece of relevant information. If we could really just read out
a couple of simple numbers off some universal database and plug them into a
one-line equation to work out how probable everything is, then predicting the
future would be easy. Actually the probability of rain would depend on a million
factors—the time of year, the air pressure, cloud cover, temperature, humidity,
the number of butterflies to have recently flapped their wings in Brazil—and it
would be computationally impossible to do the sums, even if you could keep
track of every single one. But #f you could, you could simply run Bayes’ rule over
all of them, and give yourself the precise probability of rain tomorrow.



CROMWELLS RULE

As a great Bayesian thinker put it: I beseech you, in the bowels of Christ, think it
possible that you may be mistaken.

The thinker was, of course, the Lord Protector Oliver Cromwell, writing to
the General Assembly of the Church of Scotland in 1650, ahead of the Battle of

Dunbar.? Cromwell had the misfortune to die more than forty years before
Thomas Bayes was born, but nonetheless he has given his name to an important
rule of Bayesian decision theory, Cromwell’s rule. Named by Dennis Lindley, the
rule says that you should never assign anything, other than a logically necessary
truth such as “2 + 2 = 4,” a probability of one or zero. That is: you should never
be certain.

One should always, says Lindley, “leave a little probability for the moon being
made of green cheese; it can be as small as 1 in a million, but have it there since
otherwise an army of astronauts returning with samples of the said cheese will

leave you unmoved.”2?

Here’s another reason why. Let’s go back to our rain-and-wet-pavements
example. Imagine that my house is in the McMurdo Dry Valleys in Antarctica.
(The schools aren’t great and you can’t get a good coftee, but the house prices
are very reasonable.) There hasn’t been any rain for 2 million years. So my prior
probability of rain on any given night is about 1 in 700 million.

I notice wet pavements. I know that the likelihood of seeing wet pavements is
four times greater under the hypothesis “it rained last night” than under the
hypothesis “it didn’t rain last night,” we established that last time, but the prior
probability of rain is so low that my posterior probability is still vanishingly tiny,
about 1 in 170 million, or 0.000000006.

But then I walk down the street, and I notice that the pavements outside my
neighbor’s house are also wet. Using my posterior probability as my new prior
probability and doing the same sums again, I end up with a new probability of
0.000000024, or one in 42 million. Still, it’s amazingly unlikely that it rained.
My sprinklers and my neighbor’s sprinklers must have gone oft at the same time.

Then I walk past another house. Then another. Both pavements are wet. My
probability has gone up to 0.000000384, about 1 in 2.5 million. Still, the



overwhelmingly more likely hypothesis is “All our sprinklers happen to have
gone off at the same time,” but the “rain” theory is starting to become less insane
than it was.

By the time you’ve walked past sixteen more houses, and noticed the wet
pavements outside all of them, it’s about 70 percent likely that it rained last
night. It doesn’t take // that much evidence to shift you away from even very,
very strong priors.

But now imagine your prior was zero. You plug that into your equation, and
your posterior probability would be—zero. Whatever evidence you find, zero
times anything equals zero. You could walk past a thousand houses, all with wet
pavements, and you would never assign the faintest probability to the idea that it
might have rained.

ON DESCRIBING PROBABILITIES AS ODDS

If we think about probabilities in terms of odds, rather than percentages or a
number between zero and one, the reason to avoid ones and zeros becomes
clearer. You get odds by taking the probability and dividing it by 1 minus the
probability. If something is probability 0.9, then you take 0.9 and divide it by 1
minus 0.9, or 0.1. So it's 0.9/0.1 = 9. Your odds are, therefore, 9:1. If it's 0.5,
then your odds are 0.5/0.5, or 1, so they’re 1:1.

When you use probabilities, a probability of one looks much the same as a
probability of 0.9 or 0.5—it's just one more number. But when you use odds,
it's clearly very different. A probability of 0.999999 in odds is 999999:1, but a
probability of 1 equals infinity to 1. Infinity isn't a real number, and you can't
use it in sums like a real number. (To steal a line from Yudkowsky again:
“People sometimes say something like, ‘5 + infinity = infinity, because if you
start at 5 and keep counting up without ever stopping, you'll get higher and
higher numbers without limit. But it doesn’t follow from this that ‘infinity -
infinity = 5”11

Odds have another advantage, which is that they show the real
differences between seemingly similar probabilities. The difference between
0.99 and 0.999 in probability looks small—smaller than the difference
between 0.5 and 0.51—but in odds, it's the difference between 99:1 and
999:1.




You should never assign anything a probability of zero or one. To be clear,
that doesn’t mean you can’t act as if things are impossible. It’s not impossible
that all the atoms in a statue’s arm happen to move back and forth at the same
time, making the statue wave at me. It’s not impossible that I throw a hundred
thousand heads in a row on a fair coin. But both occurrences are so unlikely that
they will never happen in the lifetime of the universe, or several trillion
universes. Very, very small probabilities are very, very small—you don’t have to
think, “So you’re telling me there’s a chance?!” when you hear “There’s a one-in-
a-quadrillion chance.” But Cromwell was right: 1 beseech you, in the bowels of
Christ, think it possible—if not necessarily likely——zhat you may be mistaken.

CONSERVATION OF EXPECTED EVIDENCE

There are some fun things that fall out of the Bayesian decision system. One is
that you can’t go looking for new evidence to support your theory; it is
impossible, because any evidence you find must (in expectation) be as likely to
reduce your belief as increase it, and if you dont find evidence, that is in fact
evidence against your hypothesis.

Say that I think that a politician is bad. I expect that politician only to do bad
things, like torture puppies. I want to bolster my belief that they are bad and
evil. So I go and look at their reelection website, searching for any pro-puppy-
torture policy positions, which I am confident I will find. Either I see them, or I
don’t. How would either of those outcomes change my belief?

The temptation is to think that if I find something, it will increase my
confidence, but if I don’t find anything, it will have no effect. But that’s not how
it works. If some piece of evidence would shift your belief by some amount, then
the absence of that evidence must shift your belief in the opposite direction, and
by an amount proportionate to how strongly you expected the evidence.

Say that you think it’s 95 percent probable that you’ll see puppy-torture
advocacy on the politician’s website if they’re bad. That means you think it’s
only 5 percent probable that you won'’t.



Of course, if the politician is 7ot bad, you’ll be less likely to see the puppy
torture. Say that if they’re not, then you’ll only see it one time in ten.

Here’s how it would play out. If you see a puppy-torture video, as you
expected, then that would shift your beliefs somewhat—up from p = 0.9 to p =
0.99. But, because it’s expected, it doesn’t shift your views all that much.

But if you dont see the video—if you are surprised—then it must move your
beliefs a long way. In this case, your strong expectation being confounded would
lead to your belief in the politician being a dog-torturer crashing to just p = 0.33,
one in three.

Again, this is unavoidable. If some evidence is strongly expected, then it can’t
move your beliefs very much; it’s already part of the model of the world that
you’ve built. But if something really unexpected happens—or, in this case, if
something expected doesn’t happen—it should move your posterior belief
significantly.

In fact, the two are inversely proportional—the more strongly you expect
something, the less you are surprised (and so the less your posterior probability
changes) when you find it, and the more you are surprised (and so the more your
posterior probability changes) when you don’t. And what that means is that, on
average, your posterior probabilities should be exactly equal to your prior
probabilities—if you'd expect to see some evidence nine times out of ten in a
universe where your prior belief was true, then not seeing it should shift your
beliefs by nine times as much as seeing it. If you expect to see it ninety-nine times
out of a hundred, then not seeing it should shift your beliefs ninety-nine times as
far as seeing it would have.

This also means that, pace the common saying, absence of evidence is, in fact,
evidence of absence. If I don’t believe in unicorns, then I don’t expect to see any
unicorns. Every second that goes by without my seeing one is some small, weak
evidence in favor of my “unicorns do not exist” hypothesis, shifting my
probability estimate a tiny bit toward one. But, of course, if I see a single
unicorn, that would be utterly devastating to my hypothesis and my posterior
probability would be way down.

If your reasoning doesn’t work like this—and for a lot of us, it doesn’t,

especially on political questions, because we’re prone to confirmation bias and



groupthink—you are simply not making good use of evidence; you are not
updating your beliefs in the best possible way. If, for instance, you strongly
expected to see the video, and then didn’t, and shrugged your shoulders and said,
“Well, she’s probably bad anyway,” then you’re going to make yourself more
wrong than you need to be.

UTILITY, GAME THEORY, AND THE DUTCH
BOOK

The point of Bayesian decision theory is to help make a decision. Or, more
accurately, to describe the optimal way of making a decision, given uncertainty
about the outcome.

So far we’ve only really talked about how people form beliefs, and how they
change the probabilities they attach to those beliefs, given new evidence. A good
Bayesian should multiply their priors by the likelihood and form a new posterior
probability that is a mix of the two. That’s the Bayesian epistemology, and—as
we’ve seen—it might be practically impossible to gather all the evidence and to
compute all the sums, at least within the lifetime of the universe, but it is the
correct way of working out how much probability you should assign to a given
hypothesis.

That’s not the same, though, as saying that it tells you what to do in a given
situation. For that, you don’t just need beliefs and probabilities, you need to
know how much you care about something. In decision theory, that’s called
utility.

The easiest way to think about utility is to pretend it’s the same thing as
money. Obviously it’s not, but since we earn money through the use of our time
and labor, and we have a limited amount of it that we have to ration out between
the things that are most important to us, it’s a pretty good proxy, and also allows
you to do straightforward sums.

Probability and utility together make expected value. To understand what
that means, let’s go back to that imaginary lottery and the beeping box, the
example I borrowed from Eliezer Yudkowsky a few pages ago.



Before your box beeps even once, the chance of any given lottery ticket being
the winning one is 1 in 131,115,985. That’s not a very good chance. But you
don’t yet know if it’s a bad idea to buy a ticket. If the tickets cost £1 each, and
the value of the jackpot is £150,000,000, then if you were to buy one ticket for
every possible combination, you would be guaranteed to make money—
£18,884,015, a tidy sum. Even if you couldn’t buy all of them, it would be a
good idea to buy as many as you can reasonably afford: each individual ticket is
worth, on average, £1.14. That’s simply the value of the jackpot divided by the
chance that you’ll win it. So at £1 each, every ticket sold is an expected net loss
for the owners and an expected net gain for you, of 14p. That’s the expected
value of buying a ticket.

If the tickets cost £2 each, then, obviously, you'd be down 86p, on average, on
each ticket you bought. If you ran your beeping machine over a ticket, though,
and it beeped, then your posterior probability of the ticket being correct is a
mere 1 in 32,778,996. Suddenly, each ticket is worth 150,000,000/32,778,996,
or £4.58, so on average you'd be up £2.58 on each one.

This is the concept of utility theory, and, once again, it is mathematically
inescapable: you can’t avoid it, on pain of contradiction. This was what Frank
Ramsey and Bruno de Finetti realized in the 1930s—if you don’t obey the laws
of utility theory, you become the victim of a “Dutch book.” Here’s what that
means.

As Ramsey argued, we can represent our confidence in a belief with a bet. If
you think something is 50 percent likely to happen, you should be willing to
take a bet at even odds or better, because the expected value is positive. If you
think something is 33 percent likely, you should be willing to take any bet at
two-to-one odds or better, for the same reasons.

But that relies on your beliefs adding up to 100 percent, to probability 1. If
they don’t, you’re going to end up paying out money, whatever happens. Say
that I think it’s SO percent likely that it will rain tomorrow. I'd be willing to bet
50p, and if it rains, you give me £1 back, including my stake.

And I also think it’s 60 percent likely that it won* rain tomorrow. So I'd be
willing to bet 60p against a £1 payoft.



In that situation, you could offer me both bets: the “Dutch book.” If I'm
sincere about my beliefs, then I would be willing to accept them both. But the
pair of bets together cost me £1.10, and the payout will be £1, whatever
happens. I may as well hand over 10p before we even start (and, of course, my
betting partner really ought to make a bigger bet). I have become strictly
irrational, and you can just turn me into a pump for squeezing money out of.

As I say, probability theorists usually use money as an example, because it’s
nice and easy. Also, there’s pretty good evidence that while people say “money
can’t buy you happiness,” it sort of can—the GDP per capita of a country
correlates pretty well with the quality of its citizens’ lives.

Health economists and bioethicists do sums using “quality-adjusted life
years” or QALYs—for instance, the National Institute for Health and Care
Excellence (NICE) in the UK says that an intervention that saves one year of
healthy life, one QALY, for less than £20,000 is generally considered cost-

effective.*2 It also operates with the same model of expected value—a treatment
that will extend the lives of 10 percent of patients by five years is better than a
treatment that will extend the lives of 20 percent of patients by two years,
because 5 x 0.1 = 0.5, while 2 x 0.2 = 0.4, and 0.5 is bigger than 0.4.

But both of these are only a proxy for the real thing. Utilitarian philosophers
and economists think in terms of ##ility—that is, how much happiness we gain,
or how much our preferences are fulfilled, by a given action.

John von Neumann, the great Hungarian-American polymath—inventor of
game theory, pioneer of computing and quantum mechanics, owner of a
Wikipedia page dedicated to “things named after John von Neumann”!3 that is
three screens deep—was interested in this. Economists of his time wanted to
describe a normative way to make decisions under uncertainty—that is, how
best to choose between options, if you want to maximize expected well-being.
He was trying to develop a model of economics that could select the decision
that would make everyone happiest.

Economists in that era thought that this was fundamentally impossible,

because it involved trading off incomparable things.-l--/*- If I build a new out-of-
town shopping mall, it provides me with money (which I want) and some



people with convenience (which they want), but it also spoils the view of local
people (which they don’t want). How do we say, “This much convenience is
worth this many uglified views?”

It’s easy enough when you’re just dealing with one person: von Neumann
and his coauthor, Oskar Morgenstern, imagine Robinson Crusoe alone on his
island. He might not be able to f#/fi// all his desires—if he wants a back rub then
he’s bang out of luck, let alone if he wants a penthouse apartment or a first-class
airline ticket to Bali. But he is able to choose freely between all the desires he’s
able to fulfill. If it takes an hour to build a shelter out of banana leaves, and it
takes an hour to build a fire and cook a yam for dinner, and he has one hour
before it gets dark, then he can decide whether he values not being rained on or
not being hungry more. He can simply list his desires in order of preference and
tulfill as many of them as the tools and time available to him allow.

There’s no mathematical problem here, and classical economics could handle
it perfectly well—“Crusoe is given certain physical data (wants and
commodities) and his task is to combine and apply them in such a fashion as to
obtain a maximum resulting satisfaction,” write von Neumann and
Morgenstern. “[He] faces an ordinary maximum problem, the difficulties of
which are of a purely technical and not conceptual nature.”

But once Man Friday arrives, you have a problem. Crusoe enjoys his carbs
and doesn’t mind sleeping under the stars, so he would choose food over shelter;
Friday doesn’t like yams and he gets cold easily, so he prefers shelter to food.
Suddenly, if you want to maximize the group utility, you must trade off one
person’s desires against another’s; they have conflicts of interest. The two people
are trying to maximize different things.

Classical economics assumed that while you could rank people’s preferences
—Crusoe, (1) food, (2) shelter; Friday, (1) shelter, (2) food—you couldn’t
compare them. Even if Crusoe was really, really hungry, and Friday only a bit
chilly, you couldn’t make mathematical comparisons between them. But von
Neumann realized that you could. Morgenstern would later describe the
moment: “I recall vividly how Johnny rose from our table when we had set
down the axioms and called out in astonishment: ‘Jz bhat denn das niemand
geseben?’ (‘But didn’t anyone see that?’).”



Von Neumann set out a few simple axioms. A key one was that people’s
desires need to be transitive—that is, if they prefer A to B, and they prefer B to
C, they must prefer A to C. If I like dogs more than cats, and cats more than
gerbils, then I must like dogs more than gerbils.

If my desires are intransitive then, as with the Dutch book, I become a money
pump. If I like dogs more than cats, and cats more than gerbils, and gerbils more
than dogs, then if I own a gerbil, you can offer to sell me a cat, for £1 plus the
gerbil. But then you prefer dogs to cats, so you offer to sell me a dog, for £1 plus
the cat. And then, of course, you prefer gerbils to dogs, so you can sell me my
original gerbil for another £1, take the dog back, and start the whole process
again, £3 richer already and with a lucrative day ahead of you.

The preferences also need to be continuons and monotonic, which means that
if one decision will give you a SO percent chance of £10, you should be
indifferent between it and a decision that gives you a 100 percent chance of £5,
and that a 2 percent chance of an outcome is twice as good (or bad) as a 1
percent chance of an outcome. That means there are no sudden jumps in
people’s preferences—as an outcome becomes more or less likely, the expected
value of that outcome goes up and down smoothly. Also, preferences should be
substitutable—if you’re indifferent between cake and jelly, then you shouldn’t
care if you’re given a 10 percent chance of cake and a 90 percent chance of jelly,
or a 90 percent chance of cake and a 10 percent chance of jelly.

Given those assumptions, von Neumann sketched out his utility theorem, in
which people have preferences that can in principle be assigned a number (with
units called “utils”) and compared to one another. I might assign ten utils to a
nice day in the park, one hundred to watching Liverpool win the soccer league,
one thousand to hearing of the birth of my first niece.

This work of von Neumann’s created the field of game theory. If I want to
model how two or more people with different preferences interact—like our
Crusoe and Friday above—then I need some model to compare those
preferences. Once you've established that such a model can in principle exist, as
von Neumann and Morgenstern did, you can start doing calculations and
thought experiments.



For instance, to move away from one classic piece of British adventure
literature to another, von Neumann imagined Sherlock Holmes fleeing
Professor Moriarty. Holmes takes a train to the ferry at Dover and is spotted as
he does by Moriarty on the platform. He knows Moriarty can catch the next,
faster, train and beat him to Dover.

What should Holmes do? If he goes to Dover, Moriarty will be waiting for
him. Instead, he should get off at Canterbury, the only intermediate station; he
won’t escape to the continent, and Moriarty will still be waiting for him at
Dover, but at least he’s evaded capture in the short term. But Moriarty knows
that too—so perhaps Moriarty will get off the train at Canterbury and wait for
him there. Should Holmes stay on until Dover? But then...

Von Neumann puts some numbers on the scenarios. Moriarty gets 100 utils
if he catches and kills Holmes, either at Dover or Canterbury. He gets 0 (a draw)
if he goes to Dover but Holmes gets off at Canterbury, meaning that the hunt
goes on. He gets -50 if he gets oft at Canterbury and Holmes rolls on to Dover
and then to France.

Howmes
DoveER CANTELBURY
MOIARTY
Dover, 100 [
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What should Moriarty do? If he gets off at Dover, his average payoff is fifty:
(100 + 0)/2. If he gets off at Canterbury, his average payoft is twenty-five: (100 —
50)/2.

So he should get off at Dover. But if it’s obvious that he should do that, then
Holmes will predict it, and will get off at Canterbury, and Moriarty’s payoft will
be zero.

The answer is that Moriarty should be unpredictable—if the game were
played many times, he should go through to Dover three times out of every five,
and get off at Canterbury two out of every five. That maximizes his expected
utility, at forty utils each time. Meanwhile, Holmes should do the opposite, and



get off at Canterbury three-fifths of the time. (In the book, Moriarty does go all
the way to Dover, while Holmes and Watson get oft at Canterbury and watch
his train go by.)

In reality, of course, you can’t know exactly what the expected utility of any
decision is, just as you can’t entirely compute the Bayesian probabilities of every
outcome, because you don’t have the information or the computing power. But
if humans were perfect reasoning machines with full access to our own
underlying preferences, we could work out the math, using a combination of
Bayes and utility theorem. That is, roughly speaking, what modern artificial
intelligence does, in a much more explicit way.

OCCAM PRIORS

The thing with Bayesianism is that you have to have priors. Throughout its
history, that’s been a sticking point—Where can you get them from? How much
of a problem is it that they seem to be subjective?

Sometimes you can get your prior from easily available statistics about the
world; for a cancer diagnosis test, the prior probability can be the background
rate of that cancer in the population of people like the patient. But sometimes
you can’t be as precise as that.

In deciding between possible hypotheses, one way to establish your priors is
to look at which is more complex. Things that are more complex are less likely to
arise by chance—so all else being equal, presented with two possible
explanations, one simple and one complex, your priors should favor the simple
one.

There’s a name for that—QOccam’s razor. It’s named after a fourteenth-
century Franciscan monk called William of Ockham, who lived in Ockham,
Surrey.l-l-

But how do we decide what the simplest explanation is? When we look at the
world, often the explanations for things seem very complicated indeed. There’s a

saying, which Eliezer Yudkowsky ascribes to Robert Heinlein, ™ although it may
be a misattribution. The simplest explanation, possibly according to Heinlein, is



always “The lady down the street is a witch; she did it.” If you’re explaining why
someone got ill, “a witch did it” does seem simpler than, for instance, “Billions
of self-replicating particles got into your body, and started taking over the
machinery of your cells to make copies of themselves, and the combination of
that and your body’s own attempts to fight the particles off are what made you
ill.”

Similarly, “The thunder god was angry” seems simpler than the equations of
electrodynamics that physicists use to explain lightning. Certainly, the latter
would take a lot longer to explain than the former. We understand gods (or we
understand people, and assume gods are like people). We understand anger.
Most of us don’t understand calculus.

But decision theorists have a more formal definition of simplicity. The fact
that something can be described in a short English sentence doesn’t necessarily
tell us very much about how simple that thing is—I can say “the human brain”
in four syllables, but the brain itself is the most complex thing in the universe.

Instead, decision theorists use something called minimum message length. (1
could also describe it as “Solomonoff induction” or “Kolmogorov complexity.”
The three are subtly different, but at heart they’re equivalent.) What minimum
message length asks is: What is the shortest computer program I could write that
would describe a given output?

Let’s start with something simpler than the creation of the universe. I'm
going to take my example from the Czech mathematician/computer scientist

Michal Koucky, of Charles University in Prague.—l-z Imagine three eleven-digit
strings of numbers, he says. They are:

1.33333333333
2. 31415926535
3. 84354279521

Are any of these random? If you wanted to write a program that would carry on
those sequences to a million digits, how short could that program be?



You’re not allowed to just say, “Print random numbers,” by the way. A
random number generator is equally likely to produce any one of those strings,
at a probability of p = 1/10 ~ 11, which is to say very unlikely. You want to know
—is there a deterministic process that could produce them so that you could
predict what the next number in the sequence could be?

The first one is pretty simple. It would be a million digits of the number 3.
You could write that in four lines of BASIC:

10 N = 1000000
20FORI=1TON
30 PRINT 3;

40 NEXT1I

The others are more complex. They appear fully random; Koucky says that a
statistician looking at them would say that they pass statistical tests for
randomness.

But actually it’s very easy to predict what the twelfth digit of the second
string would be, because the first eleven are the first eleven digits of pi. We can
just look up the next digit, or, if we think that’s cheating, we can work it out.
Archimedes established a simple method of getting ever better approximations
of pi before 200 BC, using regular polygons. Either way, the answer is eight. I
could write out Archimedes’s algorithm, or any one of dozens of alternatives,
and if I plugged one of them into a computer it would (eventually) predict the
string of numbers out as far as we wanted. You can compress an infinite series of
digits into a few characters.

But the third string is truly random. If you wanted to describe it to the
millionth digit, you'd have to write it out to a million digits. There is no shortcut
that would let you do it any faster; you cannot compress it at all. The minimum
message length of any given output is bow short your description can be.

We’re trying to decide the prior probability of various hypotheses, not write
strings of numbers. But we can flip the idea around, and say that if we see a
string of numbers, what’s the most likely algorithm that produced it? Again, for



the three strings of digits we looked at, a truly random number generator could
have made any of them, with equal probability—there’s about a one-in-10 ~ 11
chance of it producing any of them. That would be the simplest explanation.
But if you saw that it had generated 31415926535, you'd be unimpressed with
the hypothesis “The numbers are random,” and you’d think there was some
slightly more complicated algorithm that better fit the data, such as “Print the
digits of pi in order.” Even though a random number generator would be just as
likely to produce that string as any other, there’s another hypothesis that would
be much more likely to produce that particular string, so you’re happy to accept
a bit more complexity in order to have a hypothesis that more confidently
predicts that data.

On the other hand, if you saw 84354279521, as far as you would know
there’s no particular pattern to the data. So you would have to take a big hit on
complexity—the algorithm would have to say, “First print this digit, then this
digit, then this one...” in order to explain it. So the hypothesis that this is just the
product of a random number generator, no more or less likely than any other
string of numbers, seems more plausible. The trade-off is between the
complexity of the algorithm and how confidently it would predict the output.

So how do you decide how much to trade off between the two? Say you want
to explain a series of coin tosses. You see, say, HTHHT'T, and you have to choose
between several different possible algorithms that could produce it.

The simplest is a program that says, “The coin is fair, and gives heads or tails
at random.” That would be a maximally simple algorithm and a very
straightforward program to write. But it would assign equal probability to that
series of results as to any other—it would say your chance of seeing that or any
string of results would be one in sixty-four.

Alternatively, you could hypothesize that the program said, “The coin will
come up H, then T, then H, then H, then T, then T.” It would assign a 100
percent probability to that outcome—it would fit your data perfectly—but it
would be much more complicated.

If you only care about how simple your algorithm is, you’ll always say, “This
coin is fair,” even if the string of coins is HTHTHTHTHT or
HTHHTTHHHTTT. And if you only care about how well it fits the data,



you’ll say every coin is fixed. But if you care about both, how do you decide how
much weight to put on each?

The way to think about it is as information. A single “bit” of information—a
binary one or zero, a yes-or-no question—is enough to divide a search space in
half. Imagine a game in which you are observing someone trying to find a door
with a prize behind it. There are one hundred doors, and you know the correct
one, but they don’t. The only way of communicating with them is with a light
switch, on or off.

Before you start, the probability of the prize being behind any given door is p
= 0.01. Your playing partner wants to get that probability up. They can say,
“Turn the light on if the right door is numbered between one and fifty.” You
turn the light on. Now they know that it’s behind one of the first fifty doors, so
they can assign p = 0.02 to all the remaining doors. They’ve halved their search
space, and pushed twice as much probability mass onto each remaining option.

That’s how much you should trade off between complexity and good fit. If
an extra bit of information in your program doesn’t allow you to halve the
search space, then it’s not paying its way. It’s not compressing the data—you’re
just shifting it into the program, rather than the data.

So in choosing between two or more hypotheses, you should (in theory) be
able to look at which is the more complex, and—all else being equal—assign
higher prior probability to the one that would be simpler to write as a computer
program, and with each extra bit of information in the program reducing its
probability by half. There are other ways of producing priors, but minimizing
complexity like this is a key one.

This is, by the way, remarkably close to how modern Al systems do in fact
work, when making a decision under uncertainty. Paul Crowley, a cryptographer
at Google, told me that in the most basic forms of AI, “if you understand Bayes,
then it really seems incredibly Bayesian.” A modern neural network Al has lots
of nodes, like neurons in a brain, and the way it learns is by strengthening and
weakening the links between those nodes—giving them higher or lower
“weights.” “You penalize it for having a really complicated set of weights,” says
Crowley. “An answer that involves a simpler set of weights has a better score.
Forcing it to choose simpler hypotheses over complex ones is precisely a Bayesian



thing; it’s an Occam prior.” Doing the math in an explicitly Bayesian way is
computationally expensive, so most modern Als use “easier systems that are
much lower compute and almost as good,” says Crowley, but Bayesianism is the
underlying mechanism.

HYPERPRIORS

You may remember that George Boole had an objection to Bayes. Say you have
an unknown distribution of white and black balls in an urn. What’s your prior?
That each ball is equally likely to be black or white? Or that any combination of
black and white balls is equally likely?

As we saw, they’re very different things. If you’ve got two balls in the urn, and
any combination is equally likely, then your three options—two black balls, one
of each, or two white balls—each have a probability of 1/3. But if each ball is
equally likely to be black or white, then all black or all white only have a
probability of 1/4, and one of each has a probability of 1/2.

If you do it with more balls in the urn, it’s even more obvious. If you assume
ignorance over the fotal distribution, the chance of seeing zero black balls out of
a hundred is one in one hundred and one. But if you assume that each ball is
equally likely to be black or white, the chance of seeing zero blacks is about one
in a million quadrillion.

That’s a problem, because it means you can’t be truly ignorant. If you say
you’re ignorant over the total distribution of balls in the urn, then you are
claiming some knowledge about the chance that the next ball will be white. If
you’re claiming ignorance over whether the next ball will be white, you’re
claiming some knowledge about the distribution of the balls in the urn.

You can get around this by thinking about hyperpriors. That is, you’re not
only uncertain about some parameter—the number of black balls in the urn, say
—but, on a higher level, what parameter you should be using. Perhaps you
should be looking at the probability of a given ball being black, instead. The

higher-level = parameter—which  parameter should I wuse?—is your



hyperparameter, and your prior beliefs over what hyperparameter to use are your
hyperprior.

In a way, it’s uncertainty over what world youre in. For instance, imagine
you’re a very simple Bayesian Al that’s playing hide-and-seck. Your opponent is
either hiding behind a tree or hiding behind a wall; you start out with a prior
probability that they’re equally likely. You play a thousand games, and in eight
hundred of them your opponent hides behind the wall. So, in the traditional
Bayesian way, you update your prior probability. You now start each game with
an 80 percent estimate that your opponent is hiding behind the wall.

But then something changes. Over the next hundred games, your opponent
turns up behind the tree eighty times.

A very simple Bayesian learning model might simply include that data in with
the rest of it, giving you about a 75 percent chance. Or it could be a bit more
sophisticated and weight more recent data more heavily, so that there’s a higher
chance.

Or it could recognize that the world has changed. It could build a new model,
one in which the opponent has a preference for the tree over the wall. It could
recognize that the world has two states, and be ready to switch its model
between the two, looking out for evidence that predictions based on one model
are failing to come true. If you see your opponent hiding behind the tree several
times, you increase the probability that the world has changed, and that you
should be using the behind-the-tree model.

That’s a hyperprior—a higher-level prediction about the shape of the world,
one that constrains and informs lower-level ones. Just as with the normal prior,
you assign probabilities to how likely it is you’re in one world or another.

MULTIPLE HYPOTHESES

Imagine you meet someone who says he is a psychic.-l-8 How much credence do
you give his claim? As Oliver Cromwell (and Dennis Lindley) would tell you, it
would be wrong to give it precisely zero. I beseech you, in the bowels of Christ,
think it possible that you may be mistaken.



But on the other hand, it’s not very likely, is it, whatever Daryl Bem might
say.

Say you meet someone. Call him the Mysterious Barry. He tells you he can
read your mind. If you write down some numbers between one and ten, he’ll
guess them. How many numbers would he have to guess correctly before you'd
believe him?

Each correct guess has only a one-in-ten chance of happening by pure chance.
So if, even after two correct guesses, you would still think it vanishingly unlikely
that the Mysterious Barry is a real psychic, then presumably your prior
probability is well below one in one hundred that his claims are real. Perhaps it
would take ten correct guesses before you'd start to think it was a realistic
possibility, which would suggest that you think it’s around the one-in-ten-billion
mark.

But Jaynes points something out. In that situation, even ten correct guesses
—even a thousand correct guesses—probably wouldn’t move you to thinking
that psychic powers are real.

In the early 1940s, a British parapsychologist called Samuel Soal claimed that

he had discovered evidence of psychic powers.-l-?- Two subjects in a card-guessing
game got the answer right more often than chance would suggest—one scored
2,980 out of 20,000, when the expected chance result would have been 2,308;
the other scored 9,410, when chance predicted 7,420. That second result is
twenty-five standard deviations from the mean, which implies that you should
not expect to see it by chance, even if you were repeating the experiment every
second for the entire lifetime of the universe.

And yet even knowing that, I suspect that you are unconvinced that the
experimental subject was really psychic. If there were really only two possible
explanations for the data—“pure chance” or “psychic powers”—then, yes, any
remotely plausible prior probability you had for the existence of telepathy would
be washed out by this extraordinary level of evidence. But that’s not the case.

There’s another possibility—that it’s not pure chance, but that it’s not
psychic powers either: that there’s some other explanation for why the subject
came up with the correct answers more often than you might expect. It could be



fraud, it could be sloppy experimental design, it could be that it’s all a big
practical joke.

Since your prior probability of psychic powers being real is so extraordinarily
small—somewhere around the one-in-ten-billion mark, we said earlier,
somewhat arbitrarily—any one of these alternative hypotheses is almost certainly
vastly more plausible. And any evidence that could support the “psychic
powers” hypothesis presumably also supports any one of those.

So if to begin with your prior belief in psychic powers was one hundred times
smaller than your prior belief in the possibility that a given scientific paper is
fraudulent, then at the end that will still be the case, no matter how much
evidence you’ve seen. Short of some experimental design that all but rules out
the possibility of fraud, no amount of evidence could ever make the really
unlikely hypothesis outweigh the more plausible one.

And, lo and behold, it turned out that Samuel Soal had been fiddling the
numbers.

The trouble with the existence of multiple hypotheses is that it means that
people with very different priors on something may never end up agreeing. If
you think psychic powers are plausible, then your prior will of course be much
greater than mine. If we both saw lots of evidence for psychic powers—for
instance, someone guessing the right number between one and ten, a hundred
times in a row—then, assuming the only two possible hypotheses are fluke or
telepathy, our priors would be washed out by the flood of data. But if we have
multiple hypotheses—for instance, fluke, telepathy, or fraud—then the evidence
would render the fluke hypothesis irredeemably unlikely, but for you, it will
make telepathy the most likely explanation, whereas for me it would put fraud in
the top spot.

And that obviously has various real-world implications. Say you have some
hypothesis, like “vaccines cause autism” or “man-made climate change is real,”
and you assign it some given prior probability. You take two people, one who
thinks the hypothesis is likely, and the other who thinks it’s not.

Then you give them some piece of evidence, like an article on the BBC News
website saying, “These scientific studies show that autism rates didn’t spike after
the introduction of the MMR vaccine,” or “these scientific studies show that the



world is getting warmer and it roughly tracks atmospheric carbon dioxide
concentrations.”

Just as with the telepathy example, if the only possible explanation for the
evidence is that the hypothesis is right (or wrong), then that evidence should
help the two people’s opinions converge. But there’s an alternative hypothesis:
that the source is untrustworthy. If one person strongly believes that MMR
causes autism or that climate change isn’t real, then the evidence will not bring
them closer to the other person’s beliefs, but will instead push them into saying,
“This is why the BBC can’t be trusted.” (Or, if the BBC provides links to the
scientific papers, “This is why the scientific establishment can’t be trusted.”)
And, disturbingly, in many cases, that would be the rational thing to do.

BAYES IN Al

At its heart, artificial intelligence is just a program that tries to predict uncertain
things. By this point, you won’t be surprised when I say that it is fundamentally
Bayesian. Artificial Intelligence: A Modern Approach, the standard textbook for
undergraduate Al degrees, even has a picture of Thomas Bayes on the front

cover, and says, “Bayes’ rule underlies most modern approaches to uncertain

reasoning in Al systems.”-z-Q

There is such a thing as “Bayesian machine learning,” which is explicitly
Bayesian, its architecture designed intentionally to mimic Bayes’ rule. 'm not

talking about that. 'm saying that—because, as we’ve seen, Bayes’ theorem

essentially Zs decision-making—all machine learning/Al systems are Bayesian.-z--l-

Imagine a very simple Al that tries to identify pictures of rats, dogs, and lions.
Really not that many years ago, it would have seemed astonishing, but nowadays
it’s not much to write home about. (In 2017, when I was doing the interviews
for my first book, it was still pretty exciting that Als could reliably tell a dog from
a cat. Now you can ask your smartphone to search your camera roll for pictures
of dogs, or of babies, or beaches, or whatever, and it will bring them all up in a
fraction of a second.)

At a very abstracted level, here’s what it does:



VRDY
@Y
(SiE1S)

Luoambm—‘ "
B — 9]
%7 w7 {—é} N Y3

RAT po4

3
2
2
)
°
»
m
-4
3
Q
2
@ ’:@
°
z

LioN
L- LABELS ——

You give it however many thousands or millions of pictures of rats, dogs, and
lions, each labeled as rat, dog, or lion, to train on (its “labeled data”). It sloshes
them around in its circuits in some fashion, and then, once it’s done that, you
give it new pictures to identify (its “test data”). It will then label each of those
pictures as rat, dog, or lion, according to its best guess. This model of Al is called
“supervised learning.” What it’s doing is predicting what the humans who
labeled the training data would label the test data.

Of course, there’s a simple and almost tautological way in which this is
Bayesian. Before seeing a picture, the Al presumably has a subjective prior
probability of p =~ 0.33 that it will be a lion: a one-in-three chance. After seeing
it, and gaining the new information, it updates its probability to p = 0.99 or
whatever. Prior, likelihood, posterior.

But we can be more specific than that. Let’s simplify the situation even
further and look at it as a graph. This even simpler Al is just looking at where a
bunch of blobs are on a graph and trying to find the line of best fit through
them. This isn’t something you need a powerful Al for: it’s just a linear
regression, statistics that Francis Galton would have been entirely comfortable
with. But it’s the same principle.

Let’s take a chart of people’s shoe size versus their height. You take a large,
random sample of people, measure their height and their feet, and plot them on
a graph—foot size along the x-axis, height up the y-axis. As you'd expect, on
average, taller people have larger feet, but there’s some variation. So the dots tend
to line up from bottom left to top right.

What your Al wants to do is draw a line through them. You could draw the
line by eye, but there’s an established system called the /ine of least squares. Draw
a line on the graph and measure the vertical distance from the line to each dot.



That distance is the error, or the loss. For each dot, square the error—that is,
multiply it by itself, so that all the numbers are positive. (A negative number
squared is positive.) Then add the squared error for all your dots together.

That figure is the sum of squared error. What you want to find is the line with
the lowest squared error: the one that has the smallest average distance to all the
dots.

HevanT

\ 4

SHoe Si12€

Those dots are your AI’s training data. And, of course, it’s a Bayesian process.
It starts out with a flat line, a flat prior. Then as you add dots—your data—the
line moves, to give you the posterior distribution, which becomes the prior for
the next bit of data.

But now you want to use it to make predictions. Say you give it someone’s
shoe size, and you ask it to guess that person’s height. All it needs to do is go
along the x-axis to the relevant bit—size 11, say—and then go up on the graph to
where the line of least squares is. That’s its best guess for the person’s height.
How confident it is depends on how much training data it has and the variance
in that data—if it’s very spread out, then the guess will be less confident.

This is, roughly, what real Als do. They do much more complicated versions,
with hundreds or thousands of parameters instead of just “shoe size” and
“height,” but the basic idea is the same. They have some training data, and they
use it to predict the value of some parameter or parameters, given some other
parameter.



Often, an Al is trained just once, and the test data doesn’t change its priors.
But that doesn’t need to be the case. It could easily be that the Al continues to
update on each piece of training data. The shape of the line each time is its prior,
the new data point is the likelihood, and together they make a new posterior
probability. The farther each dot is from the line, compared to where it was
predicted to be, the more the model is “surprised” by it and updates its
prediction for the next one. (Imagine the line is fuzzy and gets fainter as you get
farther from its center.)

So far, I've sort of assumed that the line is straight. But it doesn’t need to be.
Lots of charts would be best suited to curved lines. For instance, if you imagine
the shape of a graph with “Cumulative number of COVID cases worldwide” on
the y-axis, and “Time” along the x-axis, starting at November 2019, your line of
best fit should be an exponential curve, as the number of cases doubled every few
days. Other times, you might find that an S- or J-shaped curve best fits the data,
or a sine wave, or all sorts of things. You could arbitrarily say that your model has
to draw a straight line, but that will often be the wrong choice: it will be
“underfitting” its curve to the data.

Equally, your Al could, assuming it is sophisticated enough,H—I- simply draw a
wibbly-wobbly line that goes perfectly through the heart of every dot in the
training data. That would give it a squared error of precisely zero. But it
probably wouldn’t represent the real underlying cause of the data. When new
data arrives, it’ll most likely be a long way away from the weird wibbly-wobbly
line your AI has drawn, because it’s “overfitted” to the data.

The question, therefore, is how much freedom the Al has to wobble the line
around. That freedom is analogous to what in the last section we called
“hyperparameters”—as well as the simple question of the best-fitting curve,
there’s a higher-level question of how wobbly that curve should be. The AT’s
prior beliefs about those parameters are its hyperpriors. And they often decide
that, all else being equal, you choose the simpler of two lines. You trade off
simplicity against fit. Just what we were saying in the section on Occam priors.
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writes a short story in the style of the King James Bible about a man getting a
peanut butter sandwich trapped in his VCR, they’re doing something Bayesian.
They are using their training data to produce prior probabilities, which they
then use to predict future data.

FROM AUTOCOMPLETE TO INTELLIGENCE

As we’ve just seen, Al is about prediction. Even the very fancy new Als that have
been making headlines lately are in a sense just “predicting” what a human
would say or draw in response to a prompt.

Imagine ChatGPT, the “chatbot” released by the company OpenAl and used
to power Microsoft’s Bing search engine. It’s trained, like the image-classifying
Al in the previous section, on a vast dataset of text. That dataset is processed
through the AD’s neural network with its billions of parameters. And, in a
broadly analogous way to that image classifier, it “predicts” what would tend to
come after a text prompt. So if you ask ChatGPT, “How are you?” it might
reply, “Very well thank you,” not because it is, in fact, very well, but because the
string of words “how are you” is often followed by the string “very well thank
you.”

What’s been surprising about so-called large language models like ChatGPT
is the extent to which that fairly basic-sounding ability to predict things actually
leads to a very wide set of skills. “It can play very bad chess,” says Murray
Shanahan, an AI researcher at Imperial College London and DeepMind. “It

doesn’t do very well, but the fact that it can stick to the rules and play at all is



surprising.” What it’s doing is predicting what follows strings of text like “e4,” or
“queen’s knight to bishop 3.” The prediction might be something like “e5,” or
“pawn takes knight.”

As you can imagine, you can model this in a Bayesian way even if the Al isn’t
explicitly running Bayes under the hood. The prior probability of a randomly
selected piece of text being “pawn takes knight” is fantastically low, but given the
information that the previous piece of text was “queen’s knight to bishop 3,” the
probability goes way up.

The fact that these Als are predicting the next word (or “token,” in the
jargon) in a sequence means that a lot of people call them “fancy autocomplete”
and say that it’s not “real” intelligence. They don’t “really” understand the
world, they just mechanically predict that, statistically, “How are you” is often
followed by “Fine thanks.” Even if it looks much more complicated than that—
say, following the prompt “Write me a short story set in the Dune universe in the
style of P. G. Wodehouse” with a two-thousand-word piece about Duke
Augustus “Gussy” Atreides trying to stop his aunt marrying him off to a
Harkonnen—it is still, skeptics say, just predicting what comes next. A famous
paper in 2021 called them “stochastic parrots” and claimed that language models
work by “haphazardly stitching together sequences of linguistic forms... without
any reference to meaning.”-z-z-

But is this true? After all, one way to make good predictions is to build an
accurate model of the world so that you can understand what is likely to happen
in it. And, to some extent, that’s what large language models (LLMs) appear to
be doing. When you ask the LLM to write the story, does it have, in its neural
network, some kind of model of the P. G. Wodehouse Dune universe, with its
characters and its worlds, or is it just mechanically putting one word in front of
another?

No one really knows, to be clear. LLMs, like all modern neural-network Als,
are far too big and complicated for humans to fully understand their workings.
We can’t see what’s going on inside their “brains.” But there is evidence.

“To what extent do LLMs emergently acquire models of the world through
their objective of next-token prediction?” asks Shanahan. “Because having a
world model might actually make it easier.”



The human brain—as we’ll see in a lot more detail later in the book—seems
to do something like this. It builds a model of the world, uses that model to
predict the signals coming in from the world, and updates its model according to
how closely its predictions match reality. It’s “just predicting” what the next
signal will be, but in order to “just predict,” it needs to #nderstand. What we call
“understanding” is, really, just having a model of something that successfully
predicts its output.

Are LLMs doing the same thing? “The answer is almost certainly yes,” says
Shanahan. “But there are some nuances.”

There was a study released in 2023 that used an AI that had a similar
architecture to an LLM like GPT, but was instead trained on the board game
Othello, a Go-like game in which players take turns to place small black or white

disks on an eight-by-eight board.?3 All it saw was game notation from tens of
thousands of games, tokens noting where each player placed their disks. The idea
was to see whether the AI simply memorized a load of statistics about the game
—noticing that “f5” is often followed by “d6” in the notation, for instance—or
whether it built an internal representation of the board. That would be a “world
model,” albeit only of the small, limited world to which the AI had access.

They then looked to see if the AI would make original, legal moves that it had
never seen before—Dby artificially restricting its training data, removing all games
starting with one of the four possible moves, so that they knew that all games
starting with that move would be novel to the AI. And yet it still made very few
errors—only one of its moves in every five thousand was illegal. It was clearly not
simply memorizing the statistical correlations.

Then they used a technique called “probing” to look at the internal state of
the AI at certain points, and see if they could use it to predict the board state of
the game at that moment. They could, with considerable accuracy—which
showed that the AI had created some sort of representation of the board. Then
they changed those internal states manually, so that its model of the board
would be different, and the Al made moves that would only be legal in those
board states, implying that it was using that internal representation to make
decisions.



It’s as though, writes Kenneth Li, one of the authors of the study, you played

Othello with a friend every day.-2--4- “The two of you take the competition
seriously and are silent during the game except to call out each move as you make
it, using standard Othello notation,” he says. But as you do so, a crow sits
outside the window, out of sight of the board. And after a while, “the crow starts
calling out moves of its own—and to your surprise, those moves are almost
always legal given the current board.”

You look outside and see that the crow has scratched an Othello board into
the dirt and is using seeds to represent the disks in your current game, that it at
least has a model of the board. And then you move one of the disks around,
putting the game in a different position, and the crow makes a new, legal move
from that position. “It seems fair to conclude the crow is relying on more than
surface statistics,” says Li. “It evidently has formed a model of the game it has
been hearing about.”

Othello-GPT uses the same basic architecture as ChatGPT and the other
LLMs, so it’s reasonable to assume that these findings tell us something about all
of them. But in case you’re not convinced, another paper, from 2021, looked at
language models directly, and found that if you take narrative descriptions like
“You see an open chest, containing nothing but an old key,” and tell the AI
you’ve taken the key out, it works out things like “the chest is empty.” “Probing”

of its internal state, like that done with the Othello-GPT, showed that once

again it had an internal representation and used it to make decisions.®>

As we’ll see in the last section of this book, in quite a real sense, all humans
are doing is “predicting” the world around us. But in order to do so, we build a
sophisticated, rich model of that world, to help us make good predictions. The
suggestion is not that ChatGPT, or Othello-GPT, understands the world in
anything like the way that we do. But it does show that just predicting is more
than just autocomplete. Prediction—which, remember, is an inherently
Bayesian process—gets you a long way toward intelligence.

L. Pve sort of written one— The Rationalist’s Guide to the Galaxy, available in all or at least some
good bookshops and probably several indifferent bookshops too!



IL. So really it should be called William’s razor. You don’t call Lawrence of Arabia “Arabia” or
Jesus of Nazareth “Nazareth.”

II1. Specifically, in the case of a neural network, which is the basis of most modern Als, it would
need to have more “parameters,” that is, links between nodes in the network, than there are data
points. If that’s the case, it can draw a line that wobbles through all of them.



CHAPTER FOUR

Bayes in the World

ARE HUMANS IRRATIONAL?

In the last chapter, we talked about how Bayes’ theorem is the ideal form of
decision-making. If you could take account of all the information available to
you, you could assign prior probabilities in an optimal way, and update them
appropriately as new information came in. Actually doing so is impossible. But
we must be doing something right, in order to be making decisions at all. But
how good are we as Bayesians?

Over the last few decades, there’s been a lot of research into how irrational we

are.l The most famous work is probably that of Daniel Kahneman and Amos
Tversky, a pair of Israeli psychologists—Kahneman would win the Nobel Prize
for economics for it (Tversky had died by that point, and Nobels are never given
posthumously).

For instance, research has shown that in certain situations we are not very
good at judging risks. According to a famous 1978 study,-l- if someone asks us to
guess how likely we are to suffer some bad thing, instead of trying to think of
base rates and population prevalence, we tend to answer an easier question
instead, such as “How easily can I think of an example?” That’s called the
availability heuristic, and it’s why we tend to think of dramatic, memorable,
newsworthy risks as more common than boring ones—people think terrorism
kills more people than domestic accidents, or Ebola is more dangerous than
diabetes, and they’re off by several orders of magnitude.



We make basic logical mistakes like thinking that “Bjérn Borg will lose the
first set” is less likely than “Bjoérn Borg will lose the first set but win the match,”
even though it’s logically impossible for Bjérn Borg to lose the first set but win
the match without losing the first set first. Similarly, people rate “Reagan will
provide federal support for unwed mothers and cut federal support to local
governments” as more likely than “Reagan will provide federal support for
unwed mothers,” even though Reagan can’t do both things without doing the
first thing. (These examples are taken from a 1981 study by Kahneman and
Tversky.)-z-

That’s because, in decision theory, the stuff we were talking about in the last
chapter, the probability of both A and B happening must by logical necessity be
smaller than, or at most equal to, the probability of either A or B happening on
its own—in notation, (P(A,B) < P (A). The number of universes in which Bjérn
Borg loses the first set cannot be smaller than the number of universes in which
Bjorn Borg loses the first set but goes on to win the match. Misunderstanding
that is called the conjunction fallacy.
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People also get confused by framing effects, Tversky and Kahneman found in

another 1981 paper.-3- Say you tell people that there has been an outbreak of a
novel disease that is expected to kill six hundred people and that there are two
possible approaches to combating the disease, one reliable but partial, the other a
long shot but potentially perfect. Tversky and Kahneman found that if people
were told that the first program would definitely save two hundred people, and
that the second program would have a one-third chance of saving all six
hundred, but a two-thirds chance of saving none, then nearly three-quarters of



respondents chose the sure thing. But if you reversed the framing—told people
that the first program would definitely mean four hundred people would die,
while the second program meant a one-third chance that nobody would die, and
a two-thirds chance that all six hundred would—then the respondent numbers
reversed too. More than 75 percent of people chose the gamble.

Of course, these two framings are logically equivalent—“four hundred will
die” is the same as “two hundred will be saved.” But the way they were presented
entirely changed people’s approaches to them.

Findings like these laid the foundation for a miniature publishing industry of
“aren’t humans all mega-irrational” books, notably Predictably Irrational by
Dan Ariely and Irrationality by Stuart Sutherland, and to an extent Kahneman’s
own Thinking, Fast and Slow.

It’s not that the theses of these books were wrong—most of this research does
stand up to scrutiny, even after 2011 and Daryl Bem and all those things,
knowing what we know now about the replication crisis and the statistical
problems in psychology. When presented with questions framed like this, people
really do seem to give incoherent, irrational answers. Dan Ariely’s own work has

come under scrutiny after a 2012 paper of his* turned out to be based on
fraudulent data—Ariely denies making up the data himself, but admits he has
no good story for how it happened.-s- And a lot of the work on “social priming”
that Kahneman’s book cited has since been undermined, as we discussed in the
section on the replication crisis in chapter 2. But it’s definitely true that framing
affects how people view risk, and that people misjudge risk on the basis of how
easily they can think of examples.

People are also bad at explicitly working out how to incorporate prior
probabilities and new evidence—at being conscious Bayesians, in other words.
That’s true even of people who really ought to be doing better at it. A famous
1978 study asked sixty medics—twenty medical students, twenty junior doctors,
and twenty more senior doctors—at Harvard Medical School the following
question: “If a test to detect a disease whose prevalence is 1/1000 has a false-
positive rate of 5%, what is the chance that a person found to have a positive



result actually has the disease, assuming you know nothing about the person’s
symptoms or signs?”-é-

As you’ll know from having read this far, it’s pretty easy to work out. I tend
to do it by imagining a much larger group—say a million. Of the million, 1,000
will have the disease and 999,000 won’t. Of the 999,000, our test will return false
positives on 49,950. So assuming it correctly identifies all 1,000 who do, anyone
who has a positive test will have a slightly less than 2 percent chance of having
the disease (1,000/ (49,950 + 1000) = 0.02).

This seems like something important for doctors to be able to work out. But
the 1978 study found that only eleven of the sixty medics gave the right answer
(and those eleven were evenly spread among the groups: the students did no
worse than the senior doctors). Nearly half said 95 percent: that is, they failed to
take base rates into account at all.

Other studies have found similar results. A 2011 paper asked junior obstetrics
and gynecology doctors: “Ten out of every 1,000 women have breast cancer. Of
these 10 women with breast cancer, 9 test positive. Of the 990 women without
cancer, about 89 nevertheless test positive. A woman tests positive and wants to
know whether she has breast cancer for sure, or at least what the chances are.
What is the best answer?””

That version of the question really walks you through it—there are nine true
positives and eighty-nine false positives! All you have to do is work out what
nine is as a proportion of nine plus eighty-nine. Nonetheless, of the nearly five
thousand residents who answered the question, just 26 percent got it right.

I used to think the takeaway from all this was that humans are deeply
irrational. I’'ve moved somewhat away from that, though. Since we know that
ideal decision-making is necessarily Bayesian, and since humans mostly make
good decisions—most of the time, we successfully find food to eat, seck shelter
to get out of the rain, and avoid being hit by cars—we must be doing something
right. And I think a lot of the “Humans are so biased!” discourse is usually really
saying, “Other humans are so biased.”

The way to think about it is that we humans are amazingly rational, 7f
information is presented to us in ways that we are designed to process it.



That’s Jens Koed Madsen’s position, anyway. He studies human rationality
in his work as a psychologist at the London School of Economics. “If you’ve sat
there and fiendishly designed a behavior experiment, and it’s taken you two
months to design,” he says, “maybe it’s not all that much like our day-to-day
lives. Maybe it’s artificial. If you look at people in their everyday lives, they’re
kind of fine, in like 90 percent of their decisions. If I want to buy a coffee, I'm
capable of going to get one from the café.”

He uses a different example. There’s another famous experiment designed to
show how silly we all are, called Wason’s selection task, devised by Peter Wason
in 1966.% Here’s a version of it:

There are four cards on the table. Each one has either a number or a letter on
one side, and either a person or an animal on the other side. The four faces you
can see are a star, an 8, a young woman, and a rabbit. You’re told that if a card
shows 2 number on one side, the other side shows an animal. Which cards do
you have to turn over to find out whether that’s true?

Have a think for a second!

I’m just going to leave some line breaks so that hopefully you can think about it
without accidentally seeing the answer.

... tum te tum...

... OK. So. Most people turn over the 8 and the rabbit. Which makes intuitive
sense, since the claim is about squares and animals, but it’s wrong. The correct
answer is the 8 and the young woman.



This is pure Aristotle-and-George-Boole-style propositional logic. The claim
is “If X (one side of the card has a number) is true, then Y (the other side has an
animal) is true.”

You can show that claim is false in two ways. One, you could look at an
example where you know X is true and find that Y is not true; or you could look
at an example where you know Y is not true and find that X is true. So you look
at X and at not-Y.

You can turn over the 8, and if there’s no animal on the other side, you know
that the claim “If number, then animal” is false. (X but not-Y.)

But also, if you turn over a non-animal picture, and find that it has a number
on the other side, then that also proves that the claim “If number, then animal”
is false. (Not-Y and yet X.)

Meanwhile, if you turn over a picture of an animal, and it doesn’t have a
number, that doesn’t prove anything. “If X, then Y” isn’t disproved by “Y and
yet not-X.”

If you got it wrong, don’t worry. I have seen that question about a dozen
times and always struggle to piece it together, even knowing that it’s a trick and
that all I have to do is remember exactly what the trick is. In Wason’s original
study he found that less than 10 percent of respondents got it right, and later

replications found similar results.”

The usual write-up of this is that it shows that humans are highly prone to
confirmation bias—that instead of looking for ways of falsifying a hypothesis,
we look for evidence to support it, so that our pre-existing beliefs aren’t
challenged.

But Madsen thinks this is something of a gotcha. “Think back to your
student days,” he says. “You’re at a college party, and you know it’s illegal for the
party to be serving alcohol to minors.” (I should say that I was twenty when I
went to university, and my excessive drinking was perfectly legal by UK law, but
I’'m going to pretend I’'m being asked the same question about high school.)

Madsen imagines the following situation: The campus police are coming.
You see four friends of yours, all drinking. You know the ages of two of them—
one’s twenty-one and one’s sixteen—but you don’t know what they’re drinking.



And you can see what the other two are drinking—one’s got an orange juice and
one’s got a beer—but you don’t know how old they are.

As you can probably see, that’s the exact analogue of the Wason selection
task. You could imagine it with four cards, like this:

16\ | 21 [T= b

Obviously, you need to check the age of the kid who’s drinking beer, and the
drink of the kid who’s sixteen. “In that situation, everyone gets it right,” says
Madsen. “If the twenty-one-year-old is hammering tequila, fine. If the sixteen-
year-old is drinking orange juice, fine.” This isn’t just Madsen’s hunch. He’s
used these examples on his students and finds they all get it, when it’s put in
concrete terms like this: “They’ll just check those two people to make sure the
party isn’t shut down.” A 1992 study along these lines by two evolutionary

psychologists also found that 75 percent of respondents got it right,-l-Q compared
to less than a quarter given the same logical problem with more abstract terms.

“The selection task is mentioned in every textbook to show how irrational we
are,” says Madsen. “But are we really, if we place it in a natural ecological
environment?

“If you require that we phrase it in a super-abstract way to get an effect, is
there really an effect, or is it only in the margin? It seems unkind to people to say,
‘Because you couldn’t do this very abstract task that I've labeled specially to be
super-tricky, then you are full of confirmation bias and failed to falsify things.’
Especially when people can then come along and do it a hundred times out of a
hundred in a natural environment.”

This seems to be true: humans are genuinely pretty good at reasoning, when
the reasoning takes place in a format familiar to them. Steven Pinker recounts a
story of a southern African hunter-gatherer tribe, the San, also known as
Bushmen, which he takes from the research of an anthropologist called Louis



Liebenberg.-l-l- You might not instinctively think of southern African hunter-
gatherers as practitioners of Bayesian reasoning, but Pinker argues that they are.

The heel of a porcupine’s paw has two pads (the “proximal” pads, near to the
arm, as opposed to the intermediate pads, where the palm of your hand would
be, or the digital pads, on the claws). A honey badger’s paw has one proximal
pad. Usually, a paw print will show all the pads, but sometimes—on hard
ground, say—the print will be only partially visible. The San distinguish
between the chance that a honey badger will leave a one-pad print—the
sampling probability—and the chance that a one-pad print has been left by a
honey badger—the inverse probability. A one-pad print might be an imperfect
porcupine print. Further, the San will take into account the prior probability: if
they find an ambiguous print, they’ll think it’s more likely to come from a
common animal than a rare one. This is precisely how Bayesian reasoning works.

In modern life, we’re often pretty good too. Another common “Aren’t
humans irrational?” gotcha is that you can give people the same speech, and tell
them it was given by a politician they like or a politician they don’t like, and their
reaction to it will be entirely different.

But, points out Madsen, that’s thinking about things like a frequentist—
assuming that we can only use the current evidence to make decisions with. In
fact, it’s perfectly rational to take your prior beliefs about a politician’s probity
into account when assessing their policies. He and colleagues published a paper
in 2016 asking American voters whether they thought a policy was likely to be
good if a particular politician supported or attacked it.l2 The politicians they
named were the five most high-profile candidates in the presidential primaries—
Hillary Clinton and Bernie Sanders for the Democrats; Jeb Bush, Marco Rubio,
and Donald Trump for the Republicans.

The authors got 252 people to rate the candidates on trustworthiness and
political expertise. (In case you’re interested, Sanders got the highest average for
trustworthiness, Clinton the highest for expertise, and Trump the lowest for
both.) Then they asked them about their opinion on a hypothetical, unspecified
policy that politician either supported or attacked. Unsurprisingly, they found
that people’s prior beliefs about a politician’s trustworthiness influenced
whether they thought a policy that politician supported (or attacked) would be



any good. But more interestingly, they found that people responded in a highly
Bayesian way—the degree to which their prior beliefs influenced their posterior
ones very closely matched an explicitly Bayesian model.

“It means that people are saying, ‘I don’t trust him, I think he’ll have a bad
policy,”

different views on people.”

>

says Madsen. “And that’s not irrational! It’s just saying you have

In general, it’s best to think of human biases as products of our mental
heuristics, shortcuts that allow us to do what would otherwise be extraordinarily
complex math. The availability heuristic, mentioned above, probably works
pretty well most of the time—it might fall apart when we’re thinking about
high-profile risks like school shootings, but if we’re thinking about stuft in our
daily life, like “How likely am I to get in trouble if I go through this red light on
my bike?” it’s a lot easier and more efficient than (and probably nearly as
accurate as) trying to assess base rates and so on. A straightforward example is
catching a thrown ball. Doing the math—assessing the likely path of the ball’s
parabola, moving to the place it will hit the ground, and positioning your hand
and closing it in the exact timing—would be astonishingly complicated. To
quote Douglas Adams:

A ball flying through the air is responding to the force and direction with
which it was thrown, the action of gravity, the friction of the air which it
must expend its energy on overcoming, the turbulence of the air around
its surface, and the rate and direction of the ball’s spin. And yet, someone
who might have difficulty consciously trying to work out what 3 x 4 x 5
comes to would have no trouble in doing differential calculus and a whole
host of related calculations so astoundingly fast that they can actually

catch a flying ball.13

But that’s not what we’re doing. When a cricket fielder sees the ball going
high toward the boundary rope and starts running to catch it, they’re not doing
differential calculus. What they’re doing is using a simple shortcut called the gaze
heuristic. The psychologist Gerd Gigerenzer describes it like this: “Fix your gaze



on the ball, start running, and adjust your running speed so that the angle of

gaze remains constant.”1% No mathematics are involved at all. Experiments show
that non-human animals use the same system—dogs catch Frisbees by keeping

them in the same place in their eyeline,-l--s- just as baseball outfielders do to catch

fly balls.

Experimenters can tell this is what catchers are doing, because if they had
immediately solved the ballistic equations to predict where the ball would land,
they would have run at full speed in a straight line to where the ball would end
up, and wait there. But instead, they change running speed as they travel to keep
the ball at the same angle in their eyeline, and slightly curve their run as they go.

The gaze heuristic is almost as accurate as actually calculating the trajectory,
but computationally far simpler. The Royal Air Force realized during the
Second World War that they could use the gaze heuristic to help guide fighters to
intercept bombers, and that it would be much quicker than doing the math.

Guided missiles such as the AIM-9 Sidewinder use it to shoot down enemy

planes.-l-G-

When humans make decisions under uncertainty, they’re doing something
similar: using simple heuristics that are much less effortful and time-consuming
than doing the conditional-probability mathematics. Sometimes, and especially
under artificial laboratory conditions, those heuristics misfire and mislead us,
and then we call them “biases.”

“There are tons of them,” says Madsen. “If you observe something new, you
say you've found a new heuristic. But there’s no overarching theory. It’s like
biology before Darwin. And they contradict each other.” For instance: there’s
recency bias, which is that we overweight more recent evidence. But there’s also



anchoring, which is that the first thing we see tends to set our expectations. And
there’s frequency bias, the thing you’ve seen most often. “Recency is what you
saw recently, anchoring is what you saw first, and frequency is what you saw
most, and [yet] your decision theory uses all of them?

“It’s not that we’re always rational—maybe there are ditches that we fall in,”
he says. “Maybe confirmation bias is a really deep one, or conjunction bias is
more shallow. But it’s a question of how much these things influence behavior at
the margins. Maybe we’re super-irrational, walking around being wrong all the
time, but I don’t think that’s true.”

There obviously are specific ways in which humans make irrational choices:
the classic example is that in the months following the September 11 terrorist

attacks, Americans chose to drive long-distance journeys much more, out of fear

of flying. A 2009 paper-1-7- found that that may have led to about 2,300 extra

driving deaths—about two-thirds the death toll of the atrocity itself—because
flying is so much safer than driving. Perhaps this is just my own political bias
speaking, but I'd also say that the decision to spend trillions on invading Iraq
and Afghanistan to reduce an already tiny but highly visible risk of terrorism,
and spend next to nothing reducing the much greater but harder-to-picture risk
of global pandemics, was irrational at the time and has been shown to be in
hindsight.

But making decisions under uncertainty is hard. We don’t have access to all
the information, and integrating all the information we do have into the Bayes
equation would be computationally impossible. Instead we use shortcuts and
heuristics. But it seems that our instinctive decision-making, from a Bayesian
perspective, isn’t that bad.

Even with things like, say, vaccine hesitancy—if you have low trust in public
health systems, then your prior will be to distrust vaccines, and you won’t
update much on new evidence coming from public health experts. That is, given
your priors, perfectly rational. If someone wanted to persuade you otherwise,
they would do better to build your trust in public health systems, rather than to
provide you with a list of public health experts saying that vaccines are safe.
“Maybe your assignment of priors is fucked up,” says Madsen. “Fine. But that’s
where Bayes comes in as a lovely tool, because we have to understand that.



“What you find in Bayesian studies,” he says, “is that, sadly or happily, people
are a bit off, but basically reasonable. They’re kind of fine. And that ain’t very
sexy, it won’t sell a lot of airport books, but I think it’s kind of sexy in its
unsexiness. It’s a way of saying that we’re reasonable people. If we were
completely all over the place, like the heuristics and biases people sometimes
suggest, then how on earth would we have done what we’ve done? Build
complex systems and skyscrapers and so on? By and large, we have gray areas and
weak spots, but we’re kind of OK.”

It is, though, nonetheless true that when it comes to explicit assessments of
probability, humans aren’t always that good. In the next section, we’ll look at
that, and later, at some people who are trying to be better.

MONTY GOT A RAW DEAL

Humans can be good at implicit, automatic reasoning, as we have seen. But it’s
definitely true that when the situation calls for more formal, explicit
probabilistic thinking, our heuristics lead us astray, to the point that some
people—even people who definitely should know better—simply cannot accept
the real answer, even when it’s demonstrated to them very clearly.

There’s a game show on US television called Let’s Make a Deal. Contestants
have to make a series of deals with the host. In its original version, the host was a
guy called Monty Hall. The deals were like “Would you rather take [known sum
of money] or [unknown gift in a box]?” All very Bayesian-decision-making-
under-uncertainty.

Let’s Make a Deal inspired a letter to the magazine American Statistician, in
1975.18 The statistician Steve Selvin of the University of California at Berkeley
imagined the following scenario. Monty offers a contestant three boxes: A, B,
and C. In one of the boxes are the keys to a Lincoln Continental, which I assume
is some kind of large car, and if you choose that box you get to keep the car as
well as the keys. The other two boxes are empty.

The contestant chooses box B. Monty offers the contestant $100 for the box.
Those of you who’ve been keeping up will think, hang on, a one-in-three chance



of a car worth about $10,000 has a higher expected value than a sure thing of
$100, and the contestant agrees: he turns down Monty’s offer. Monty ups his
offer to $500, and the contestant stays firm.

But then it gets interesting. Monty opens one of the remaining boxes on the
table, box A. It’s empty. And then he says: “Now either box C or your box B
contains the car keys. Since there are two boxes left, the probability of your box
containing the keys is now 1/2. I'll give you $1,000 cash for your box.”

The contestant turns down that deal, but—to Monty’s surprise—makes
another one: “I'll trade you my box B for the box C on the table.” Because, the
contestant realizes, the probability of box B containing the keys isn’t 1/2: it’s
1/3. If he switches boxes, he’ll have a two-thirds chance of winning.

The puzzle became famous in 1990, when it was published as a letter to
Parade magazine columnist Marilyn vos Savant (apparently the “smartest
woman in the world,” with a recorded 1Q of 230). By then, the puzzle had
changed its format a little, but the underlying structure was the same. Here’s
how it was presented to vos Savant: “Suppose you’re on a game show, and you’re
given the choice of three doors. Behind one door is a car, behind the others,
goats. You pick a door, say #1, and the host, who knows what’s behind the
doors, opens another door, say #3, which has a goat. He says to you, ‘Do you
want to pick door #2?” Is it to your advantage to switch your choice of doors?”%2

Vos Savant had no doubt about it. She agreed with Selvin: the right thing to
do is to switch. If you keep the door you originally chose, there’s a 1/3 chance
you’ll get the car, but if you switch it’s %.

Bl

Does that seem weird to you? It does to most people. It made an awful lot of

vos Savant’s readers very angry, including several mathematics PhDs, such as this
guy: “You blew it!... As a professional mathematician, ’'m very concerned with
the general public’s lack of mathematical skills. Please help by confessing your
error and in the future being more careful.” And this one: “May I suggest that



you obtain and refer to a standard textbook on probability before you try to
answer a question of this type again?”

It also confused Paul Erdos, one of the greatest mathematicians of the
twentieth century, who insisted when presented with the problem: “That is

impossible. It should make no difference if you switch.”?% Most people think the
true probability is 50 percent, 0.5, and it makes no difference if you switch or
not.

But most people are wrong. The angry mathematics PhDs were wrong, Erdos
was wrong, and vos Savant and Selvin were right. Assuming that Monty knows
which door the car is behind, and that he always opens one of the other ones,
you should switch.

There are a few ways to grasp this intuitively. One is to imagine that, instead
of a choice of three doors, you'd originally had a choice of 1 million doors. Once
again, one of them hides a car. (And you would like a car.) You choose one.
Then Monty opens 999,998 doors, showing that all of them are empty. Now
you’re left with just two, your original choice and one other.

You can also think of it like this. Before Monty opens the door, there’s a one-
in-three chance that you picked the correct one. In that case, it would be bad if
you switched. But there’s a two-in-three chance that you picked a wrong one,
and in that case, it would be good if you switched.

Or imagine that you play the game three hundred times. In one hundred of
those, you pick the right door, and switching means that you lose. But in two
hundred, you pick the wrong door, and switching means that you win.

But what’s crucial is that Monty, first, knows where the car is, and second,
always opens a door with a goat bebind it. Once that’s stipulated—or assumed—
you can easily work out the odds with Bayes’ rule.

At the start, your probability that the car is behind any given door is one-
third, or p = 0.33. You have no information that gives you any reason to pick any
one over the others. But Monty, if he knows where the car is and always opens a
door, gives you some information; he allows you to update your prior
probabilities.

It’s easier if we use odds. The odds of the car being behind Door #1, #2, or #3
are 1:1:1: that is, there’s nothing between them. That’s still true even after you



pick Door #1.

Then Monty opens Door #3 and reveals a goat. The probability that he'd
open Door #3 if you’re right and the car is behind Door #1 is 50 percent—he
could have picked either of the other doors. But if the car is behind Door #2,
then it’s 100 percent certain that he’d have picked Door #3. And if it was behind
Door #3, there’s a 0 percent chance. So the odds are 1:2:0. That’s your
likelihood, or your Bayes factor.

You might just remember that when you’re doing Bayes’ theorem with odds,
it’s nice and easy: you just multiply your prior odds with your Bayes factor and
you get your posterior odds. 1:1:1 times 1:2:0 is 1:2:0. You know it’s not in #3,
and it’s twice as likely to be in #2 as #1.

But now imagine a different scenario, where Monty doesn’t always open a
wrong door, or he doesn’t always open a door at all. Or if you don’t know if
Monty has any particular strategy. Imagine that Monty actually flips a coin, and
if it comes up heads, he opens the lower-numbered of the two remaining doors.
Or Monty’s not even doing it: an earthquake hits the TV studio just after you
make your decision, and one of the two remaining doors happens to swing open.

Then you’re not gaining any information about the door you picked. The
prior odds are 1:1:1, but the chance that Door #2 would be the one that
happened to open is fifty-fifty whether or not you picked the right one, so your
likelihood odds are 1:1:0 and therefore your posterior odds are 1:1 as well. Then
it really doesn’t make any difference whether you stick or twist. Of course, there
was a 50 percent chance that the earthquake or Monty’s coin toss would have
revealed the car—you were unlucky there—but it didn’t.

Again, imagine it being played three hundred times. In one hundred, you
pick the right one, then Monty flips the coin, and opens one of the two
remaining empty doors. You switch and lose out. In the other two hundred, you
pick the wrong one. In one hundred of those, Monty opens the other wrong
door. If you switch, you win. But in the remaining one hundred, Monty opens
the door with the car behind it, and the game is over. So in the two hundred
universes where the game is still going on, there are one hundred in which
switching is good, and one hundred in which switching is bad.



Bayesian reasoning requires you to use «// the information at your disposal.
You don’t just know that Monty opened a door: you know (or you have some
reason to believe) his a/gorithm for opening that particular door. You know why
he did it. And that information changes your beliefs, and therefore your estimate
of the probability that the car is behind any particular door. But that feels weird
to us. Just as it feels weird that you can get a positive result on a 95 percent
accurate test and still only have a 2 percent chance of having the disease it tests
for.

This all gets much weirder (or it does for me) in the second example, the
“Boy-Girl paradox,” created by the American science popularizer Martin

Gardner in 1959.2 Imagine you meet a mathematician, and they tell you that
they have two children. You ask if at least one of them is a boy. (It’s a strange
question, but this problem is incredibly sensitive to tiny changes in wording, so I
have to be careful.) The mathematician says, yes, at least one of their children is a
boy. What’s the chance that they are the parent of two boys?

It obviously should be fifty-fifty. The other one is a girl or a boy! It doesn’t
matter what the one you know about is! But... it’s not. The chance is one-third
again.

As you may be able to tell, this drives me crazy. But it’s very much
unavoidable. Just as Fermat and Pascal realized nearly four hundred years ago,
what matters is the number of possible outcomes (assuming that all those
outcomes are equally likely). There are four possible pairs of children that a
parent of two might have: girl-girl, girl-boy, boy-girl, and boy-boy. They’re all, to
a first approximation, equally probable.

If you know that at least one of the children is a boy, but you don’t know
which one, then you’ve ruled out one of those combinations—girl-girl. Girl-boy,
boy-girl, and boy-boy all remain. You’ve already got one boy in the bank, as it
were. So the other child is either a girl or a boy. The unknown child is twice as
likely to be a girl as to be a boy. (Which I find weird because it’s like there’s some
strange quantum effect where knowledge of one child affects the sex of the
other.)

Once again, this is sensitive to far more than just the bare fact that there’s a
boy. If you know that the e/der child is a boy, you’ve ruled out two possibilities



—girl-girl and girl-boy. So now there are only two remaining outcomes, boy-girl
and boy-boy. The posterior probability of the other child being a boy is S0
percent.

Or imagine if the mathematician came up to you and said, unprompted, that
they have two children and one of them is a boy. You would probably not think,
“And it’s completely unknowable to me what the other one is!” I at least would
assume that the other is a girl (why not say, “They’re both boys?”).

The math of this is entirely the same as the Monty Hall problem above. But
for some reason I find it far more counterintuitive, and I wanted to share the
frustration with you all. And I’'m not alone, I think. People struggle with this
sort of thing: explicit probability-reasoning, actually dealing in numbers and
percentages rather than instinctive catching-the-ball-style heuristics. Next, I
want to talk about some people who try to be better at it.



SUPERFORECASTING, PART 1

I love this story, and I tell it all the time, so if you’ve ever read anything by me
before, you may have already heard a version of it. Apologies in advance.

In 1984, the Cold War was feeling pretty hot. The USSR and the US had
stockpiled vast numbers of nuclear weapons; tensions were high. I was born in
1980, and for much of my childhood there was a sort of background assumption
that nuclear war was coming. Threads on the BBC, When the Wind Blows,
Sting asking whether the Russians love their children too; the art of the day was
written, to quote Queen, in the shadow of the mushroom cloud.

The tension was partly caused by uncertainty. The Soviet premier, Leonid
Brezhnev, who had been in power since 1964, had died in office in 1982. He had
been replaced with Yuri Andropov, who was already sixty-eight at the time and
somewhat unwell. He suffered a kidney failure in early 1983, and died a year
later, having spent much of the intervening time semiconscious in hospital. He

was replaced by Konstantin Chernenko—“an enfeebled geriatric so zombie-like

as to be beyond assessing intelligence reports,” according to one historian®2—

who was widely expected to die soon too. Ronald Reagan’s presidential
administration was struggling to build relationships, and it was widely expected
that another Soviet hard-liner would follow Chernenko.

The tension was so high that awful mistakes were made. In September, a
South Korean airliner, Korean Air Lines flight 007, strayed into Soviet airspace.
Moscow dispatched fighters to intercept it and mistakenly shot it down; among
the 268 dead was an American congressman.

And then the world came awfully close to nuclear war. Each autumn, NATO
would carry out a war game called Able Archer, preparing Western forces for the
buildup to and the event of an all-out nuclear attack. The 1983 version was in
November. But it was more comprehensive than most years, and involved more
realistic communications and the participation of heads of government.
Moscow saw it taking place, and convinced itself that it was part of a ruse to
cover a genuine attack. They started loading nuclear warheads onto bombers.



Only a “well-placed spy” in the KGB’s London headquarters, who passed the

info on to Washington via British intelligence, alerted the White House to how

close they had come to accidentally sparking a holocaust.%>

In this tense atmosphere, the National Research Council, part of the US
National Academies of Sciences, received a grant to put together a panel tasked
with the job of “preventing nuclear war.” The panel included some very high-
profile researchers. Amos Tversky, whom we know for his research with Daniel
Kahneman, was among them. Three other panel members had already, by that
point, won a Nobel. Others were high-ranking military officers, Kremlinologists,
government officials. But one was, in his own words, “by far the least impressive
member of the panel”-z--l*-—a thirty-year-old freshly minted associate professor of
political psychology at UC Berkeley called Philip Tetlock.

While Tetlock was there, he noticed something. Everyone agreed that after his
inevitable and imminent death Chernenko would be replaced by another grim-
faced politburo lifer—but they disagreed as to why. The liberal-minded in the
group thought that the tough anti-Soviet policies Reagan favored were
strengthening the hard-liners in the Kremlin and making reform impossible.
The conservatives thought that the Soviet system was designed to produce
repressive authoritarians, and so it would produce another repressive
authoritarian. “They were equally confident in their views,” Tetlock wrote.

They were right that Chernenko would die soon: he lasted barely a year after
taking office. But then something happened that neither liberals nor
conservatives expected. The politburo appointed Mikhail Gorbachev, youngish
at fifty-four, energetic, and a committed reformer. Immediately, Gorbachev got
to work—he imposed new policies of glasnost, meaning “openness,” and
perestrotka, meaning “restructuring.” He made a concerted effort to reach out to
Reagan and the US, which Reagan cautiously but gladly accepted. Within
months, the two leaders were talking about disarmament.

Neither the liberals nor the conservatives had predicted this. But Tetlock
noticed something: both groups seemed to think it made perfect sense given
what they already believed, and that they knew what was going to happen next,
despite not having predicted this at all. The liberals thought that Reagan
deserved no credit at all: it was down to a new era of Soviet leaders, tired of



watching the USSR’s economy crumble. Conservatives thought it was down to
Reagan forcing the arms race to the point where the Soviets could no longer
keep up and had to back out of the competition. Both sides, in short, thought
that the completely unforeseen events proved that they had been right all along.
Tetlock thought that maybe whatever had happened, people would have done
the same thing.

A few years later, Tetlock set up a new study. He wanted to test the judgment
of all these experts. Not that he doubted their intelligence or their integrity, but
he thought that perhaps everyone, when confronted with unexpected
information, found ways of saying that it just showed that whatever they already
believed must be true.

Tetlock gathered 284 experts—journalists, military leaders, politicians,
academics—and asked them to make more than thirty thousand predictions.
Crucially, the predictions were falsifiable and time-limited: they were asked
things like “Will the yen be higher than it is now against the deutschmark in one
month’s time?” And they put numbers on those predictions.

This was to avoid what Tetlock called “vague verbiage.” If someone says
something is /zkely, or that it may bappen, it’s not clear what they actually mean
by that. Do /likely things happen 30 percent of the time or 60 percent? If
something might happen, does that mean it’s 5 percent likely or 50? Research has

found that people use these words in very different Ways:-z-s- the phrase “real
possibility” can mean 20 percent or 80 percent depending on who says it. And,
of course, you’re not really tied to any outcome. If it happens, you can say you
predicted it, and if it doesn’t, you can say you only ever said it cox/d happen.

“I can confidently forecast that the Earth may be attacked by aliens
tomorrow,” Tetlock writes. “And if it isn’t? I'm not wrong. Every ‘may’ is
accompanied by an asterisk and the words ‘or may not’ are buried in the fine
print.”-z--é-

Instead, he asked everyone to give precise numbers. It’s 45 percent likely that
Greece’s sovereign wealth fund will default this year, or there’s a 10 percent
chance that fighting between North Korea and South Korea kills more than one
hundred people before 2030. And then—over the following months and years—
they saw how many of those predictions came true.



Here’s the clever bit, though. Each forecaster was asked to make around one
hundred forecasts each. Some of them would have been 80 percent, some of
them 40 percent, and so on. (“Walter Mondale to win the Democratic primary,
65 percent,” or whatever.)

At the end of the study, they looked at how many of the forecasts came true.
If 60 percent of your 60-percent-likely forecasts came true, and 30 percent of
your 30 percent forecasts, etc., then you were well calibrated. Your assessments
of the probability of things were good. If they came true more often than you'd
thought, then you were underconfident. If they came true less often, you were
overconfident.

Of course, there’s more to good forecasting than calibration. If you predicted
“50 percent likely” every single time, then, depending on the questions, you
might do extremely well on calibration. But youd be precisely no use as a
forecaster—you’d provide zero information.

So Tetlock’s study also rewarded (justified) precision. If you made a 90
percent forecast and it came true, then you got more points than for a 60 percent
forecast. But if you made a 90 percent forecast and it didnt come true, you lost
more points.

THE BRIER SCORE

Tetlock used something called the Brier score to assess his pundits’ abilities.
Brier scores were developed in weather forecasting, to assess the accuracy
of previous forecasts. The lower your Brier score is, the better your forecast.

How they work is that they take the squared error of your forecast. After a
forecast comes true (or doesn't), that forecast has a probability of one (or
zero). The error is the difference between that and your prediction. So if you
said it was 80 percent likely that you would be on time for work, you'd write
that as 0.8. If you then were on time for work, you'd subtract that 0.8 from 1,
and you'd have an error of 0.2. Then you square that, and get 0.04. If you
weren't on time for work, you'd subtract it from 0, and you'd have an error of -
0.8. Whatever your error is, you square it. So your —0.8 becomes 0.64.
(Squaring a negative number always gives you a positive number.)

If you'd been more circumspect and said there was only a 60 percent
chance, then you'd have been rewarded less lavishly if you were right—your



squared error would be 0.4 * 2, or 0.16, instead of 0.04. But if you'd been
wrong, you'd have been punished less severely: you'd have 0.36 instead of
0.64.

This is the simplest form of the Brier score, for choosing between two
options. If forecasters are choosing between several options, or from a
continuous series of outcomes—say, the value of the pound against the dollar
on December 14, 2024—then there are slightly more complicated versions.
But the basic idea is the same.

After several years, Tetlock assessed the results, and it turned out that the
average forecaster did very little better than random guessing. In fact, in a
memorable phrase that he would come to somewhat regret, Tetlock said they did
no better than “a dart-throwing chimpanzee.”

He regretted it, as he wrote in Superforecasting three decades later, because
people misunderstood it—they took it to mean that 4// experts were guessing
randomly. But in fact there were distinct groups. Some thought the world was
simple and could be explained (and predicted) simply—they had what Tetlock
called “one big idea” that they rubber-stamped onto every situation. Others
thought the world was complicated—that the specifics and details of each
situation mattered, and that predictions were difficult and uncertain. He called
the big-idea people “hedgehogs” and the life-is-complicated people “foxes,”
following a quote that Isaiah Berlin lifted from Archilochus, a Greek poet: “The
fox knows many things, but the hedgehog knows one big thing.” And it was the
hedgehogs who did no better than the chimpanzee, if I can mix my animal
metaphors.

Tetlock’s example of a hedgehog was Larry Kudlow, a CNBC pundit who
had previously worked as an economist for the George W. Bush administration.
His “big idea,” said Tetlock, was supply-side economics: he thought that tax cuts
would stimulate the economy. When Bush enacted tax cuts, he expected a huge
economic boost—and then said that he was right, even when the GDP and
employment figures didn’t back him up. Right up until the 2008 financial crisis,
he continued to insist that the world was witnessing the “Bush boom.” But, as
Tetlock points out, this didn’t hurt his career: Kudlow got a new prime-time
show in 2009.



That’s because hedgehogs tell nice, straightforward stories: whether that tax
cuts are always good, or that we should tax billionaires more, or that the
problem is that our enemies hate our freedom, or that white colonialism is the
root of all evil. And those stories are easy to package for the media. So while the
media isn’t deliberately selecting bad forecasters, they “go looking for hedgehogs,
who happen to be bad forecasters.”%.

Foxes, on the other hand, did somewhat better. Not brilliantly—lots of them
were still beaten by simple algorithms such as “predict no change.” But better
than random guessing.

And a few did quite a lot better. The very best, the top 2 percent, Tetlock

called “superforecasters.”



SUPERFORECASTING, PART 2

Tetlock’s work is interesting from our point of view because it found that the
people who do best at forecasting the future—the superforecasters—think in
Bayesian terms. Sometimes they explicitly do the calculations, but even if they
don’t, they think very much of priors and updates.

One superforecaster, Michael Story, who now runs the Swift Centre
forecasting firm, gave me an example in an interview I did with him a few years
ago for a radio documentary. “Imagine you go to a wedding,” he said. “And
someone asks you, do you think the marriage is going to work out? And let’s
assume you want to give a proper response.

“Someone who’s not very experienced with thinking probabilistically might
get overwhelmed with all the information in the room. You know, you can see
how happy the couple are, nice music is playing, everyone’s dressed nicely,
there’s food. And you translate the feeling that gives you into probability.” You
might say, “I give it 90 percent.” Forecasters call this the “inside view”: judging
the probability on the specifics of the situation in front of you.

But a superforecaster would start the other way. Theyd look for a reference
class, or a base rate. That is a body of similar events that you can use for a starting
point. For instance, in this case, it might be the fact that somewhere between 35
and 40 percent of British marriages end in divorce.l! That’s called the “outside
view”: judging the probability on how often similar things have happened in the
past. After that, they'd use the inside view to update away from their base rate.
Then they might use other things—such as the age, social class, or educational
level of the couple, and whether that affects the statistics; or simply the
forecaster’s own judgment of how well suited the couple are to each other.

It doesn’t take much squinting to see that taking the outside view is simply
looking for a prior probability. The prior probability of divorce is about 0.4 over
the lifetime of a marriage, given no information other than they’re British. Then
you get more information—such as whether you think they’re a well-matched



couple—which acts as your likelihood, or Bayes’ factor, and you use that to
update your prior to give you a posterior probability.

“I wasn’t explicitly plugging things in to Bayes’ law,” David Manheim,
another superforecaster, whom we’ve already met, says. “But it was certainly
conceptually the model that I implicitly used. It’s amazing how much [Tetlock’s
work] is a straightforward consequence of E. T. Jaynes’s probability theory. How
do you aggregate judgment? It’s a nasty problem, but here’s how the math
works. How much should you care about base rates? They should be your prior.
The end.

“How much should the inside view change your mind? You need a likelihood
function, to say how much to shift my opinion based on this information,
instead of “What does this shiny new information say?’”

Most of us, though, don’t keep base rates in our mind like that, so our beliefs
are swayed by every new bit of information. “If every time you get new data you
start over,” says Manheim, “then obviously your estimates jump all over the
place and will be way overfocused on whatever’s most recent.” (Aubrey Clayton
would probably say that’s what frequentists do.)

Of course, there’s more to being a good forecaster than using base rates. For
one thing, “using new data as a likelihood function” sounds nice and simple, but
in most cases, you can’t just do the math—yet people are still using their
judgment to decide how much to update away from the base rate. “You have to
make a value judgment on how relevant a piece of information is,” says Jonathon
Kitson, another superforecaster. “Not everything comes into the forecasting
model, and that’s where the judgment angle comes in. 'm not much of a
mathematician at all, but I probably think in quite a Bayesian way, updating all
the time.”

There are also other tricks that good forecasters use. One is the Fermi
estimate, named for the great nuclear physicist Enrico Fermi. The classic example
is a problem Fermi gave his students: estimate the number of piano tuners in
Chicago.

Most people would think that that’s an impossible question or might just
pull a number out of nowhere in particular. “I dunno, a thousand?” But Fermi
broke it down into smaller, still unknown, but more easily guessable parts.



Here’s how Tetlock estimated it, using Fermi’s system. Chicago is a pretty big
city; smaller than LA, which has about 4 million people, but probably not that
much. Say 2.5 million. How many people own pianos? Tetlock has a stab at one
in a hundred, plus about the same number in schools and music halls, so he
reckons fifty thousand pianos in Chicago.

How often do pianos need tuning? Maybe once a year, let’s say. How long
does it take to tune a piano? Maybe two hours. The average American works
about forty hours, fifty weeks a year (says Tetlock; it sounds pretty bleak, but
OK). That’s two thousand hours, but let’s imagine they spend 20 percent of
their time traveling between jobs, so sixteen hundred hours a year. That’s eight
hundred pianos.

If all fifty thousand pianos need tuning every year, and each piano tuner can
tune eight hundred of them in a year, then you need about 25,000/800 = 62.5
piano tuners to keep all of Chicago’s pianos in tune.”® Fermi found that
breaking down the estimates like this usually ended up with answers not too far
from the real number. Tetlock says the real answer is something like eighty, so his
estimate is impressively accurate.

You can do similar things for probability. How likely is it that—to use
another example of Tetlock’s—Yasser Arafat’s death was caused by poison?
Arafat, the leader of the Palestinian Liberation Organization, died in 2004. In
2012, Swiss researchers announced that they had discovered unusually high
polonium-210 in some of his belongings. (Polonium-210 is the highly
radioactive element that was used to murder the Russian dissident Alexander
Litvinenko in London in 2006.) Arafat was exhumed and tests carried out to see
if there was polonium in his system. And Tetlock’s organization asked
forecasters: “Will [the inquiries] find elevated levels of polonium in the remains
of Yasser Arafat’s body?”

What probability would you put on it? Tetlock warns that if you’re not
reflective about it, you could leap to a conclusion—“Of course Israel would do
that!” or “Isracl would never do that!” perhaps—and assign a probability like
that, probably 100 or 95 percent in the first instance, 0 or 5 in the second. But
Tetlock points to how a superforecaster did it: break down the question into
parts, such as “How might polonium end up in Arafat’s body and how likely is



each method?” and “How long does polonium take to decay?” and “If major
intelligence agencies think it’s worth investigating, how likely must they think it
is?”—questions you can estimate and look into individually. The superforecaster
ended up giving a 65 percent probability that the investigations would find

polonium—which they duly did.?? Fermi estimates are a way of employing the
law of large numbers by yourself: you make several estimates of small things
instead of one big estimate, and if there’s no reason why those errors should be
systematically high or low, then they will tend to cancel each other out, just as
Thomas Simpson found with measurements of planetary positions in 1755.

Good forecasters also use the wisdom of the crowds. That is, they update
their forecasts on the basis of what others say. The average of several forecasters’
predictions is likely to be more accurate than any particular forecaster’s, for the
same reason as the Fermi estimates—Dbecause the forecasters’ errors tend to
cancel one another out. But you can be more sophisticated than that. “The
simplest thing would just be to average them,” says Mike Story, the previously
mentioned superforecaster. “Assume random noise is the reason why the experts
disagree. But we also know that people difter in their ability to make accurate
forecasts, and that can give you a clue for who to listen to. If they’ve predicted
something terrible happening every six months for the last twenty years, maybe
you pay a little less attention to them. But someone who’s well calibrated and
has a good track record, you would pay a lot more attention to.” In Bayesian
terms, you treat forecasts from reliable forecasters as having more information—
they’re like a likelihood function with a sharper peak, which moves your prior
further.

And, most important, forecasters keep score. Note your forecasts down,
publicly, and see how many of them come true, and whether your 60 percent
guesses come true 60 percent of the time, and so on. It’s very easy, otherwise, to
forget your bad predictions and remember your good ones. “People will tell you
that they want to be right about things,” says Story. But that can manifest in two
different ways. It could mean that they have some belief and don’t want to be
told that it’s wrong. Or it could mean that they want to rid themselves of any
beliefs that are wrong. “So your urge to be right can drive you in two different



directions: to force your views on other people, or to throw away ideas that are
causing you to be wrong.

“By being public about your forecasts, it gives you an incentive to want the
information you have to be right. There’s no way to force everyone to agree with
you. You made a specific prediction, you wrote it down, and you wrote down
your confidence. You made it public, and now there’s nothing you can do. [If it’s
wrong,] the only way you can be right is by changing your view.”

That’s extremely Bayesian, once again. You have some prior belief that makes
some prediction; the prediction doesn’t come true; you downgrade the strength
of your belief.

Perhaps this sounds very basic. But it’s quite rare for people to think in terms
of probabilities and percentages—we tend to fall into thinking “it will happen”
or “it won’t happen” (or sometimes “maybe it will happen”). And when you get
people to put percentage probabilities on their beliefs, they are usually
overconfident. At the forecasting workshop I went to, Mike Story and his
colleagues gave us all an exercise. We were asked a series of questions, like “What
year did Celine Dion have a number one with ‘My Heart Will Go On?’” or
“How many Premier League goals did John Barnes score for Liverpool against
Leeds?” and we were told to give a range of numbers that we were 90 percent
confident the true answer would fall within. (So, say, 1994:2000 or 1:8.)

“If you ask people to give you their 90 percent confidence interval,” says
Story, “most of the time, the numbers they give, you should have had the label of
a 50 or 60 percent confidence interval.” That is: their 90 percent confident
answers are wrong at least 40 percent of the time. “That’s standard; it’s what’s in
the literature. Whenever I’ve taken a group of friends or colleagues and asked
them to do it, you generally see that people are overconfident.” You can test your
own calibration and confidence at a number of places online—the charity

80,000 Hours has a good (if somewhat time-consuming; it’s got one hundred

questions) calibration exercise at SOOOOhours.org/calibration-training.-I-I-I-

As we’ve seen throughout this book, you can’t be a Bayesian without priors.
Without some sense of how probable something was before you saw the
evidence, you can’t make any claims about how likely it is after seeing the

evidence. You can say that your COVID test is 99 percent accurate, so there’s


http://80000hours.org/calibration-training

only a one-in-one-hundred chance you'd see a positive result if you actually
didn’t have COVID. Or you can say that youd only see a p-value of 0.05 or
lower one time in twenty if the effect you were looking for didn’t actually exist.
But without a prior, you can’t say how likely it is that you have COVID or how
likely it is that you've found a real effect.

That’s true when we’re making decisions in the real world, just as it is with
scientific and statistical questions. What superforecasters are good at, or part of
what they’re good at, is finding suitable base rates—that is, priors. Sometimes,
like in Mike Story’s example of divorce, they’re fairly obvious: you can look at
the actual numbers, and see how many marriages go the distance, and use that as
your starting point. But often it’s more subtle. If you wanted to predict, say, the
Russian invasion of Ukraine—what’s your base rate? The average number of
land wars in Europe per year? The average number of Russian invasions of
Ukraine per year? It’s a subtle art—picking an appropriate reference class to
compare your example with. And then, of course, you need to know how and
when to depart from that base rate.

“Choosing your base rate is the basic thing you do,” says Jonny Kitson. “But
I’ve always said that the real value of superforecasting is recognizing when the
base rate is off. Land wars in Europe are rare since 1945—the annual base rate is
well below 5 percent—but by December 2021 I was at about 60 percent likely
that there’d be a war, and was up to 80 percent by mid-January.” (You may, at
this point, be reminded of the section about “hyperpriors” in chapter 3. When
do you need to update your model of the world?)

Humans are good Bayesians when they’re being instinctive, but most of us
aren’t great when we have to put actual numbers on it. Some humans, though,
do it better. Even if they’re not literally using Bayes’ rule, they’re doing the same
dance.

BAYESIAN EPISTEMOLOGY

A nice thing about a Bayesian view on the world is that it dissolves a large
number of philosophical conundrums that other epistemologies find extremely



confusing. For instance: There’s a debate going back to at least Arthur
Schopenhauer, the eighteenth-century German philosopher, about definitions
and identities. What is a “game,” for instance? Is it something people do for fun?
Well, there are lots of things that we do for fun that aren’t games—skiing or
reading a book. And lots of people play games for other reasons than fun, such
as exercise or money.

Is it a competition, then? No: again, there are games that are co-operative or
solitary, and competitions that aren’t games (is the lottery a game?). Is it an
activity with rules? Not all games have rules: my daughter plays great imaginative
games in which she organizes her teddies into... honestly, I have no idea what’s
going on. But there are no “rules” per se.

It’s not just games, of course, although that’s the paradigmatic example. The

United States Supreme Court once had to adjudicate over whether or not the

film The Lovers was “hard-core pornography.”-3-9- “I shall not today attempt

further to define the kinds of material I understand to be embraced within that
shorthand description,” said one of the judges, “and perhaps I could never
succeed in intelligibly doing so. But I know it when I see it, and the motion
picture involved in this case is not that.” How does he define what is—and is not
—pornography, if there is no single defining feature or clear definition?

A huge amount of our public discourse comes down to our efforts to
categorize things, groups, people, and concepts. Is [political party] fascist? Is
[group] a cult? Is [person] a racist? But these categories are all fuzzy. Some things
fit very obviously within them (Mussolini, clearly a fascist). Others are more
controversial.

When you look at this through a Bayesian light, it’s straightforward to the
point of obviousness. Ludwig Wittgenstein argued that there was no one feature
that distinguishes gamehood. Instead, games (and other things we struggle to
define yet can clearly recognize: “I know it when I see it”) have family
resemblances >t The family of things we call “games” shares various features:
some games have some of those features, some have others. He didn’t call it
Bayesian, but it clearly is.

The prior probability of any given concept being a “game” is very low. There
are lots of other concepts, such as “non-Euclidian geometry” and “ennui.” But if



you learn that people do it for fun, and that it has rules, that’s your new
information, and it moves your probability up. If you find it doesn’t involve
competition, you move your probability down. Exactly how confident you need
to be to call something a “game” is up to you (and it’s not, as ever, as if you’ll be
explicitly doing the sums). But it’s a Bayesian process.

And, of course, how you learned what defines “games” was itself Bayesian.
When you were a toddler, and you first heard the word, it was probably referring
to Snakes and Ladders or something like that. So your low-confidence guess is
that “games” are played on flat cardboard surfaces, involve dice and snakes, and
require zero skill. Later you learn that “catch” is also a game, and so is “football.”
You notice that these do not include flat cardboard surfaces, but that Monopoly
and Clue do, so you estimate that P(flat cardboard | game) = 0.57, or
thereabouts. Catch doesn’t have codified rules, but all the others do. As you
learn to attach the label “game” to more and more concepts, you get more
accurate estimates of the probability of seeing certain characteristics in those
concepts. Your prior probability that games involve balls was low, then someone
pointed out that hockey, football, tennis, cricket, and Ping-Pong are all games, so
you updated.

This works a lot better than some other models! Socrates defined man as “a

featherless biped”: Diogenes plucked a chicken and said, “Behold! I've brought

you a man.”>2 If Socrates had said that when he learned that something was a
featherless biped, it vastly increased his probability estimate that that thing was a
man (or a woman! Come on, Socrates, it’s 411 BC, get with the times), then he
would have been making a perfectly reasonable point. But there will be
counterexamples, so think it possible you may be mistaken.

A comparable philosophical conundrum is the paradox of the heap. You have
a large heap of sand. You remove one grain of sand. It’s clearly still a heap. You
remove another grain of sand. It’s clearly still a heap. You keep removing grains,
one after the other, until there is just one grain left. Now it’s clearly not a heap.
At what point did it stop? Which was the grain of sand that turned it from
“heap” to “not heap™?

Aristotelian philosophy struggles with this. It feels pretty crazy to say that 1
million grains or whatever is a heap but that 999,999 isn’t. But if you accept the



premise that a heap minus one grain of sand is still a heap, then you either have
to arbitrarily draw some cutoff like that, or accept that a single grain of sand
counts as a heap. But with Bayesian reasoning, you don’t! It’s a subjective
probability assessment, but you have very high confidence that a million grains
of sand constitute a heap. As you remove grains, your confidence falls a tiny bit.
By the time you get down to five grains you ascribe only a tiny bit of probability
mass to the hypothesis “that load of sand constitutes a heap.” No paradoxes or
weird cutoffs are involved.

It’s lovely and consistent and elegant. It avoids the Aristotelian problem of
hard definitions, of clear boundaries between category X and category Y.
Sometimes—most of the time—you don’t have those clear boundaries, because
the world is not made up of logically deductive statements. The world is not
black and white.

But it also avoids the opposite problem, the Paul Feyerabend or Robert
Anton-Wilson problem, that nothing is knowable at all. It admits that the world
is shades of gray—but those shades of gray are different shades! Some of those
shades are almost white, and some are almost black! I can’t be certain that
vaccines work, and I can’t be certain that the pyramids were made by ancient
aliens either. But that doesn’t mean I think those two statements are equally
likely to be true.

By acknowledging that beliefs and definitions are probabilistic, we can
salvage the idea of knowledge and justified true belief from cod-postmodernist
ideas that all beliefs are uncertain and therefore equally valid. And, of course, the
beliefs that help us predict the world, that best meet the incoming information
and avoid prediction error, are the ones we should have confidence in—the ones
that are most likely to be “true.”

L. When decision theorists call something “rational,” they mean that it is the most likely way to
achieve some goal. It doesn’t matter whether your goal is making money, or achieving world
peace, or building a ninety-foot-tall tower of used chewing gum. You can behave “rationally” in
this sense even while doing things most of us would call very stupid.

II. It’s tricky to be precise about this, because to have a firm statistic you'd need to look at
marriages where at least one partner has died, so that you’re looking at the entire length of the



relationship. Obviously that rules out most marriages within the last forty years. But the Office
for National Statistics says that about nine in every one thousand, or 0.9 percent, of couples got
divorced in 2021. If you imagine most couples get married around thirty and live to around
eighty, that’s fifty years of marriage, so each marriage has p = 0.991 of surviving a given year, and
0.991 ~ 50 = 0.63. So if 2021 is a representative year, about 37 percent of marriages end in
divorce. “Divorces in England and Wales: 2021, Office for National Statistics,

ML T just did it and found, pleasingly, that my 80 percent guesses were correct 85 percent of the
time, which isn’t bad. Years of reporting on this stuff have beaten the overconfidence out of me.


https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/divorce/bulletins/divorcesinenglandandwales/2021
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/divorce/bulletins/divorcesinenglandandwales/2021

CHAPTER FIVE

The Bayesian Brain

FROM PLATO TO GREGORY

We’ve looked at how humans are, in certain circumstances, good Bayesians: that
while you can build artificial scenarios in which our reasoning goes wrong, and
while we’re not great at explicitly working out Bayes’ rule, our decisions seem to
approximate that rule pretty closely under more natural scenarios.

But we can go deeper than that. In fact, everything you perceive about the
world is due to Bayes’ theorem. Perception and consciousness itself is—in quite
a direct sense—Bayesian.

You could reasonably argue that this is almost tautologically true. “Bayes
really nicely describes the sort of problems that brains face,” says Anil Seth, a
neuroscientist at the University of Sussex who works on consciousness. “They’re
faced with ambiguous sensory information.” The job of the brain is to use that
information to work out what the cause of the information is. “Going from
observations to what caused those observations—that’s inverse reasoning, for
which Bayes is very well suited,” Seth says. And since I've just spent most of a
book arguing that Bayes’ theorem underpins all decision-making under
uncertainty, and that any decision-making process is doing well insofar as it
approximates Bayes and badly insofar as it doesn’t, it would be surprising if our
brains weren t approximating Bayes to some extent.

But there’s a stronger claim that various scientists make, which is that Bayes’
rule mathematically describes large parts of what the brain does, and that the
central thing the brain does is build predictions of the world, which it then



integrates with information coming in via the senses. That is, it has priors, which
it updates with likelihoods, and produces posteriors. It does this at a variety of
different levels—from very low-level, basic predictions about which a particular
set of neurons will fire when certain muscles move, to complex, high-level,
conceptual predictions like “I expect the work cafeteria will have soup today.”
And those predictions are tested against reality—whether the predictions match
the sensory information coming in. When they don’t, our brain has to update its
model of the world.

This goes against what it feels like to perceive the world—we feel as though
we see the world through a window. But we know that’s not true. We know that
“we” are brains sitting inside bone cavities, connected to the outside world only
by fleshy strings of nerves that are linked to sensory organs. What the Bayesian
brain model says is that perception is a two-way street: information travels “up”
from our senses, yes, but it also travels “down” from our internal model of the
universe. Our perception is the commingling of that bottom-up stream with the
top-down one. The two constrain each other—if the top-down priors are
strong, then it requires precise, strong evidence from the senses to overturn
them.

Scholars have wondered how we perceive the world for thousands of years.
Plato’s famous allegory of the cave is about perception. Prisoners are chained up
in a cave, facing a wall on which the shadows of a puppet play are cast by a fire
behind them. The prisoners, who have never seen anything else, think the
shadows are reality, and give names to the shadows.t For Plato, our perception of
the world is like that: we don’t see reality as it is, but a shadow of it, mediated
through our senses.

But Plato wasn’t the first to address the question. The pre-Socratic
philosopher Democritus, who lived in the fifth century BC, believed that objects
in the world constantly emit tiny images of themselves, eiddla, made of the
atoms of which the object itself is made.? Euclid believed that the eyes emit rays,
which explore objects of the world and return to the viewer with information
about those objects.-3- Those two models of perception—rays emitted from the
eye, known as extramission, or physical forms emitted by objects and received by



the eye, known as intromission—dominated understanding of perception, or at
least visual perception, for a thousand years.

The tenth-century philosopher Abu Ali al-Hasan Ibn al-Haytham, known in
the West as Alhazen, was the first to build something like a modern theory of
visual perception. He argued that light was emitted from luminous objects and

traveled in straight lines in all directions. That light then bounced oft other

objects and some of it was received by the viewer’s eyes.-4-

Immanuel Kant, in the eighteenth century, said that the universe as it truly is
must be unknowable, and all we ever know is the world through our senses: he
made a clear distinction between phenomena, our perceptions of objects, and
noumenda, the things in themselves.2 More than that, he foreshadowed the
Bayesian model of the brain: he argued that our brains must have pre-embedded
conceptual frameworks with which to make sense of the world, or the data
coming from our senses would be a meaningless jumble. We must, in modern

language, have priors.-é- We don’t just passively perceive the world: we construct
it, or a model of it.

This idea was taken further by the nineteenth-century German polymath
Hermann von Helmholtz, inventor of the ophthalmoscope—that funny little
stick with a lens on top that opticians use to look at your retina. But his great
insight was that we cannot perceive the world as it truly is—we’re not fast
enough.

Our nervous system was known, at the time Helmholtz was working, to be
electrical in nature. Electricity was known to travel extremely fast—the speed of
light—so it was assumed that nerve signals traveled from our sense organs to our
brains essentially instantaneously. Helmholtz’s professor told him not to bother
trying to measure it. But Helmholtz did so anyway, and discovered—to
everyone’s surprise—that nerve signals travel embarrassingly slowly: about 165
feet per second, or 112 miles an hour.” He also measured the time it took
someone to respond to a sensation, such as a touch on the arm, by having them
press a button as quickly as possible, and found that the time from sensation to
reaction was more than a tenth of a second. This showed, he argued, that it is
impossible that our perception of the world is real and immediate. It can’t be,



for the simple reason that the information in the world can’t get to us quickly
enough. If perception were direct, then we'd be constantly seeing the world a
small but appreciable moment behind events. If I knocked a pen oft my desk and
tried to catch it, I'd be aiming for a space in the air about two inches above where
it actually was.

Helmbholtz argued, therefore, that our apparently effortless, instantaneous
perception of the world must be an illusion. Instead, our mind makes a series of
“unconscious inferences,” building a 3D model of the world from the noisy,
two-dimensional image projected on our retinas and the equally noisy and
unclear information coming from our other senses.

He draws one example: Imagine someone holding a pen. Three of their
fingers are touching the pen. But the only information each finger is sending is
that of contact with a smooth cylindrical object—the direct signals from the
nerves in their hand would be the same if their fingers were touching three
different pens. They perceive themselves to be holding one pen because they

know their fingers are close together.§ Their model of the world shapes their
perception of it.

In the 1970s, the British psychologist Richard Gregory built on Helmholtz’s
work. He suggested that our perceptions are essentially hypotheses—he
explicitly drew an analogy with how the scientific process makes hypotheses
about the world—and we test those hypotheses with our senses. He used a series
of optical illusions to demonstrate his point. Optical illusions, he argued, are not
just defects in our perception—they are created by the way our brains
manufacture the model of the world. To create a clever illusion, we need to
exploit the shortcuts our brain uses.

That’s because, he said, the brain has to do a lot of work. The world as it
appears on our retinas is messy: upside down and back to front, for a start (if you
close your eyes and press the bottom-left of one eye, the resulting splodge of
color appears in the top right of your visual field). It’s also distorted by the
concave shape of the back of your eyeball, and it’s bumpy with the blood vessels
that cover it. Worst of all, the eye is just badly designed, with the nerves from the
retina pointing inward rather than out, so in order for them to get out to the
brain the optic nerve has to come through the retina, leaving a big blind spot.



(Fun game. Close your left eye, and hold both your index fingers together,
straight in front of you, at eye level. Keep the left finger where it is and keep
staring at it, but move your right finger slowly to the right. When it’s moved
about eight inches, the top knuckle of your right index finger will disappear.
That’s your right eye’s blind spot.)

“The brain’s task is not to see the retinal image,” wrote Gregory, “but to
relate signals from the retina to objects of the external world.”?

But there’s a problem there. A signal from the outside world could be caused
by a literally infinite number of things. Imagine you’re outside on a dark night,
and you see a single bright spot in the sky. Is it small and close—a firefly, perhaps,
or a landing light on a plane? Or is it vast but far away, perhaps the planet
Jupiter? Or, even vaster and even farther, the star Vega? There are two variables
—size and distance—and you can explain the phenomenon “small bright light”
with an infinite number of combinations of the two: closer and smaller, farther
and larger, anywhere in between. “The essential problem of the brain to solve is
that any given retinal image could be produced by an infinity of sizes and shapes
and distances of object,” Gregory wrote, “yet normally we see just one stable
object.”-l-p-

Gregory suggested that what the brain does is throw out hypotheses. Then it
tests those hypotheses by comparing them to evidence from the senses. He
demonstrated that when two hypotheses explain the evidence equally well, the
brain can flip between those hypotheses. The “Necker cube” is the most famous
example: if you’re like me, you should be able to “choose” to see it as either

viewed from above and to the right, or below and to the left.

/! /!




This is, you can probably see, a Bayesian model. Your hypotheses are priors.
You seek new evidence from your senses to confirm or disconfirm them—that’s
your likelihood, your data. And you combine them to get a posterior probability
distribution. In the case of the Necker cube, you have no strong reason to prefer
either of your two hypotheses (the cube viewed from below or the cube viewed
from above), so your prior probability is split fifty-fifty between the two, and
your data fits equally well with both.

OPTICAL ILLUSIONS

In 2015, when I was working at BuzzFeed, one day the office suddenly became
extremely excited. One of our colleagues in the US office—Cates Holderness,
queen of finding weird stuff on the internet—had found some weird stuft on the

internet.A: It was a Tumblr post with a picture of a dress in it.

You will almost certainly remember The Dress. It was a strange moment for
those of us at BuzzlFeed, because The Dress burst out of our too-online world
and became entirely mainstream. I remember going for a pub lunch with my
wife and in-laws, and overhearing some total strangers walking past arguing
about whether it was blue and black or white and gold. Cates’s piece received
over 37 million views, and basically everyone in the entire BugzFeed
organization, including those of us in London, was recruited to write spin-offs
and reactions and so on.

The image was of a dress, with horizontal stripes. The stripes were obviously
white and gold. But Cates’s URL was “help-am-i-going-insane-its-definitely-
blue.” Her post included a poll that you could answer: Is it white and gold or
blue and black? Of the 3.7 million people who have answered that poll over the
last eight or so years, 67 percent said white and gold, while 33 percent said blue
and black. Taylor Swift tweeted that she was “confused and scared” that other
people couldn’t see blue and black. Justin Bieber was another member of team-
blue-and-black. Katy Perry and Kim Kardashian saw it as white and gold. (I'm
getting all this from the Wikipedia page.) And it was simply impossible for most
of us to see what the other folks were talking about.



Color perception is another splendid example of Gregory’s “hypothesis”
hypothesis. When light hits our retinas, it can be various wavelengths and
amplitudes, and there can be however many photons reaching our light-
detecting cells per second. But we don’t care about the wavelength of the light or
the number of photons: we care about what that wavelength tells us about the
object the light has bounced off. (“The brain’s task is not to see the retinal image,
but to relate signals from the retina to objects of the external world,”
remember?)

So if a spot on your retina is being bombarded by a small number of photons
of relatively low amplitude, but a wide spectrum of wavelengths—that is, a dim
gray color—that could be explained by one of several hypotheses. It could be a
bright white object under dim light, for instance. Or a dark gray object under
brighter light. Or anything in between.

This is neatly demonstrated by a famous illusion, Adelson’s checker-shadow
illusion, created by Edward Adelson of the Massachusetts Institute of
Technology. It shows a chessboard in apparent 3D, with a large cylinder in one
corner. That cylinder is apparently lit from the side, casting a shadow over the
board. Two squares—one in shadow, one not—are labeled A and B.






Obviously, A is one of the dark squares on the chessboard, and B is one of the
light ones. But they are the exact same shade. You can see that when—as in the
image above—we connect the two with bars of that shade. Or you can cover the
page with your fingers so that only those two squares are showing. This is a pure
example of your brain generating hypotheses and testing them against reality
(and, in this case, being deceived by a deliberate trick). As we said, a retinal
impression of a mid-gray color could come from a light square dimly lit or a
darker square more brightly lit.

Receiving that retinal impression, then, your brain looks for clues for the best
hypothesis. It notices that one square is in apparent shadow and one is not. So it
thinks that the best hypothesis is that the shadowed square is light but dimly lit,
while the other is darker and more brightly lit.

Another way you can see the hypothesis-generation in action is to look at a
picture that makes no sense until you are given a hypothesis, and then you can’t
see it any other way. For instance, this picture of a... well, what is it?

I’'m not going to tell you for a few lines. Look at it and see if you can make any
sense of it.

... I get paid by the line, you know...
OK. It’s a picture of a cow. Its head is on the left-hand side of the image,
facing you.



Can you see it now? If you can, try to see the image as a random collection of
blots and splodges again. If you’re anything like me, or like most people, you
simply won’t be able to. You have your hypothesis, you’ve tested it against the
available evidence, and it has now snapped into place. You can’t shift it.

Color perception is something that takes place—most of us probably agree—
well below the level of conscious awareness. (Later on, we’ll explore “high-level”
and “low-level” perception in a more principled way, but for now let’s just

is probably a

»

stipulate that.) And recognizing images of cows, well, “cow
higher-level concept than “gray,” but it’s still stuff that seems quite basic.
But how about reading?
Take a look at these two.



THE
CHT

PARIS IN THE
THE SPRINGATIME



In the first one, did you notice that the H in the word “THE” and the A in
the word “CAT” are the same shape? Whether you did or not, you certainly
didn’t have any difficulty reading it. Your brain knows that the the hypothesis
“THE” is more likely than the hypothesis “TAE” (except in Scotland, maybe),
and that “CAT” is more likely than “CHT.”

And what did you read when you read the second one, in the triangle? Did it
say “I LOVE PARIS IN THE SPRINGTIME”? Or did you notice that the
word “THE” is repeated? Probably not. (Did you notice that I repeated it in the
above paragraph, as well?)

Again, this is all Bayesianism. Your strong prior is that PARIS IN THE
SPRINGTIME is more likely than PARIS IN THE THE SPRINGTIME, and
that THE CAT is more likely than TAE CAT or THE CHT, so even when the
evidence comes in, it’s not enough to shift your posterior probability very far.
You need much stronger evidence—a long, careful look—to make you realize
what’s actually there. In some cases, even that won’t do it. When your prior
probabilities are really strong, no amount of evidence can shift them. A famous
example, taken from Richard Gregory, is the “hollow mask” illusion. Look at

these images of a mask of Charlie Chaplin:'?






The first image is of the mask facing us. But then it rotates. The fourth image
shows it facing away: the face is concave, hollow. But our minds have a very, very
strong prior that faces point outward, not inward, so we see it as convex. This
prior is so strong that even when we look closely, we can’t make ourselves see it
differently. (If you Google it and find videos, it’s even more bizarre. As the mask
turns around, your brain f/zps somehow: even though you’ve just seen the mask
turning away, you can’t see it as convex.)

Hopefully all this makes what was going on with The Dress much clearer.
The information entering people’s eyes was all pretty much the same—a
selection of photons at certain wavelengths and amplitudes. But that
information was compatible with (at least) two plausible hypotheses: a dark blue
and black dress under bright, yellowish lighting, or a white and gold dress under
dimmer, blue-tinted lighting.



What’s interesting about The Dress is that most people are unable to pop
back and forth between those two hypotheses, as with the Necker cube, and
once the “real” color of the dress was revealed, it didn’t then snap into place as
with the picture of the cow. (The dress was actually blue and black: the woman
wearing it shared another picture.) One possibility is that people start with



different priors: one paper suggested that “morning people” might have a prior
that the light would be bluer. (It found, at best, inconclusive evidence for that
hypothesis, though.)*>

The exact mechanisms behind our diftering perceptions of The Dress are still
not known. But the idea is familiar: our prior probabilities, our top-down model
of the world, informed our perception of incoming information. The Dress was

a Bayesian phCIlOIIlCIlOIl.

REALITY AS CONTROLLED HALLUCINATION

A guy called Richard Fitzhugh once tried an interesting experiment. Looking
only at the nerve impulses reaching a cat’s brain from its retina, could he
determine what that cat was seeing? (I assume this involved a certain amount of
cutting up of the cat.)

The information reaching your (or a cat’s) brain, we sometimes forget, is
energy. A photon hits a receptor cell and causes a tiny chemical change, which
sends a chain reaction along a nerve. Pressure on a fingertip does something
similar. What our brains receive is a series of energetic spikes from the nerves that
lead into it. When nothing particularly interesting is happening to some sensor,
it is largely quiet, firing somewhat randomly a few times a second. But when
something changes—for instance, when a light flashes brightly—the nerves fire
more concertedly and a greater number of signals reach the brain. Fitzhugh tried

to develop a statistical method for determining when the cat had seen a flash just

by the signals passing through the optic nerve. 1%

He was successful (he learned, when he checked his results against reality).
But actual brains must do something much more difficult: they have to
determine not just between “flash” and “no flash” but “dog,” “mouse,” “car,”
“owner,” “bowl of Whiskas,” “attractive cat of opposite sex,” and an infinitude
of other possibilities. (I'm still referring mainly to cat brains here.) All they
receive is different frequencies of electrochemical energy spikes from different
inputs. Somehow, they turn that into a fully realized world of physical objects

and social interactions.



We’ve seen that there’s something going on in our brains that involves priors,
predictions, hypotheses. But now let’s flesh it out a bit. The neuroscientist Chris
Frith says that our perception of reality is a controlled hallucination.

Imagine that ’'m looking at a coffee cup on my desk. (For some reason, every
book I've read about this talks about coffee cups. I wondered if they were all
cribbing off each other, but I've decided it’s because they’re all written by people
who are sitting at a desk, scanning their eyes around for an example, and lighting
upon the same one. So I’'m going to go with tradition.) The intuitive model of
perception says that I perceive the coffee cup through bottom-up signals—that
is, signals come in through my eyes, like a television camera transmitting pixels to
a TV screen in our brain: signals of basic features of reality like color, lines,
shape. Lower-level processing in our brain takes those features and builds them
into ever more complicated ideas, which are then compared against memories
and knowledge of the world and assigned labels like “mug” and “coffee.”

That model of bottom-up perception drove a lot of cognitive science for

many years. But now the understanding is that it goes something like this.22

Instead of our image of the world coming in from our senses, our brains are
making it up, constantly. We build a 3D model around ourselves. We’re
predicting—hallucinating—the world. There’s not just a bottom-up stream of
information—there is, vitally, a top-down one, as well. Higher-level processing
in our brain sends a signal down, toward our nerve receptors, telling them what
signals to expect.

So when I'look around my desk, and my eyes move to a certain point, higher-
level parts of my brain send signals to lower-level parts, saying things like “Expect
a pink coffee cup next to the keyboard.” Those concepts are broken down by the
lower-level processors into things like “A squat pale cylinder shape roughly thirty
degrees of arc from the center of my visual field.” That in turn is broken down
into more basic concepts: this color bere, a vertical line bere, and so on. And
those are translated into the maximally basic, machine-code-level version that
Fitzhugh was dealing with: expect these axons in the optic nerve to fire roughly
this many times per second. They’re guesses, predictions, hypotheses, cascading
down from the conceptually complex higher levels to the utterly minimalist
nerve-signal levels.



At the same time, signals are coming up from those nerves: these nerves are
firing #his many times. The cup is where I expected it to be, so the nerve signals
match the predicted patterns. Because there’s nothing unexpected there, my
model of the world is left unchanged. The coftee cup is where the coffee cup
should be, so there’s no need to send any signals further up the chain. The
hallucinated scene around me can stay in place.

But now imagine that I reach for that coffee cup. I beleve it to be full of hot
coffee. I move my hand to where I expect it to be and grasp it (higher-level
expectations of a hot cup of coftee; lower-level expectations of a cylinder of
certain weight and temperature; machine-code expectations of proprioceptive
and temperature-sensing nerves signaling just so). But when my hand closes
around the mug and starts to lift it, the nerve signal patterns don’t match
expectations.

Now things start to happen. When the predicted pattern doesn’t match the
received one, the low-level processor bumps the problem one place higher up the
chain. If the slightly higher-level processor can explain it, then it will do so, and
will send new signals back down the chain. If it can’t, it sends its signal higher
up, until it reaches the high-level areas that can explain it with the conceptually
complex understanding that I finished my coffee a quarter of an hour ago, the
cup has long since gone cold, and I need to go and boil the kettle if I want
another.

What’s important then is not the signals coming up from my nerves per se,
but the difference between those signals coming up from my nerves and the
predictions cascading down from my higher-level brain regions. The crucial
phrase is prediction error, that difference between expectations and results. In
this framework, your brain is constantly trying to minimize prediction error,
making its model as close to reality as possible by updating it as new signals come
in.

Statisticians and machine-learning people might recognize this as equivalent
to a “Kalman filter”—an algorithm that takes various measurements, uses them
to estimate some unknown quantity that you want to know, and then uses that
estimate to make predictions. For instance, your phone’s GPS receives signals

from various satellites, uses them to estimate your position, and then uses that



estimate to make predictions of when it will receive the next signals, and the
whole thing begins again. Prior, data, posterior, which then forms the new prior.

The brain has to do a lot more than that, of course. As well as predicting
what signals it will see, your brain is having to predict what the signals it is
sending to your muscles will do, and how they’ll affect the signals from your
senses, in this fantastically complicated dance—signals coming up and down
(and across), “handshaking” with one another, the various processing regions
checking predictions against findings; the confidence and specificity of the
prediction and the precision of the incoming information are all weighed and
judged. And, of course, your brain is taking information from various modalities
—vision, hearing, touch and smell and taste, but also your internal senses of
where your body is and how it’s arranged and whether you’re hungry or thirsty
or horny or whatever—and combining them.

But fundamentally—and you can probably see it by now, and you’re
probably bored of me saying it—it’s another Bayesian system. Your predictions
are the priors, the sense-data is the likelihood, and the updated predictions are
your posterior probability. And, crucially, what you experience is not the data
from your senses but your predictions—predictions constantly updated by
information from the senses, yes, but the world you live in is the prediction, not
the data. “What we experience is best described as a Bayesian inference about the
causes of sensory data,” says Anil Seth, the neuroscientist.

I thought I'd be going too far to say that our conscious experience basically Zs
our Bayesian priors. But both Seth and Frith cheerfully agree with me.
“Consciousness is our model of the world, not the world,” says Frith. “The
content of our perception is the content of these top-down predictions,” says
Seth. So: consciousness is Bayesian.

DOPAMINE AND FANCY COMPUTERIZED
ROBOTS

Once again, I need to be a bit careful. It’s easy to say that anything is Bayesian if
you’re not actually doing the math. “You have a guess, and then you get some



new information, and you change your guess! Totally Bayesian!” Perhaps you
might want a bit more convincing.

Here’s one thing. As I mentioned, our brain has a particular challenge that
we haven’t really discussed so far—how to integrate information from different
senses. If I'm talking to someone, I can use the information from my ears—the
sound of their voice—and from my eyes, by looking at her mouth as she talks.

What a good Bayesian would do is put more weight on whichever sense gives
the most precise information. Chris Frith and Anil Seth both mentioned one

experiment that showed that this is exactly what happens.—lﬁ- “It’s a beautiful
experiment,” said Frith. “Not by me. You bring together vision and touch.”

The experimental subjects were asked to estimate the width of a ridge on a
board, using their eyes and hands. But the board and ridge weren’t real: they
were projected onto a mirror from a screen above, with the subject’s hands
underneath the mirror attached to what Frith called “fancy computerized
robots” and the paper’s authors called “force-feedback devices.” This allowed the
researchers to increase or reduce the precision of the two inputs as much as they
liked, by adding static to the image or imprecision to the feedback from the
fancy computerized robots.

Under normal circumstances, vision is a more precise sense than touch, so the
subjects’ estimates were much more based on their visual sense than the “haptic”
(touch) feedback. But as the experimenters added noise to the visual field, the
more subjects were influenced by touch.

The interesting point, though, was that the experimenters a/so modeled how
an observer would integrate the information from the two noisy senses if they
were being perfectly Bayesian, using “maximum likelihood estimation,” which
you may remember as the thing that Ronald Fisher and Karl Pearson fell out
over. As the standard error on the input from each sense increases—that is, as
the curve on the graph gets flatter and wider—the amount it should influence
our beliefs becomes less, in the way Bayes predicted.

What the experiment found was that how humans actually integrated the
information was extremely close to how an ideal Bayesian observer would. Our
brains are taking noisy data and using it in a close-to-Bayes-optimal way.



You can see this integration (although I guess you’ll have to take my word for
it that it’s Bayes-optimal) in a number of audiovisual illusions online. The most

famous is probably the McGurk effect 1 If you watch the video, you’ll see a
facial close-up of a man apparently saying “bah... bah... bah” and then “vah...
vah... vah” over and over again. But the sound is the same throughout—always
the same “bah.” The only difference is that the man in the video’s lips are pressed
together when you hear “bah,” while he puts his top teeth over his lower lip
when you hear “vah” sounds. Your brain takes the (extremely precise)
information from your eyes and overrides the somewhat less precise information
from your ears.

There are lots of audio illusions like this. One that I find zncredibly difficult
to understand is that the same ambiguous noises will be heard as either “green

needle” or “brainstorm” depending on which words you’re reading at the

time.13

There’s more to it, as well. When we are expecting something, our brains
react to the prediction of that thing more than the thing itself. Frith also pointed
me toward a 2001 paper by the neuroscientist Wolfram Schultz, which put
electrodes in monkeys’ brains (which I agree is not an especially nice thing to do)

and looked at when dopamine-releasing cells were active.l2 (Pm going to
sidestep a massive bun-fight here about whether it’s OK to call dopamine “the
reward chemical” or “the pleasure chemical.” It is a neurotransmitter, it has
many roles, it’s not as straightforward as saying it’s how our brain tells us we’re
happy or whatever. But it has a relationship with reward.)

In this paper, the experimenters taught the monkeys to expect a reward—a
gush of tasty fruit juice—after they saw a bright light flash. The monkey would
be shown the light, and then a second later be given a gush of juice directly into
its mouth.

Fans of vivisection will be reminded of Pavlov and his dogs, learning to
associate him ringing a bell with him bringing food. Pavlov noted that, in time,
the dogs started to salivate when the bell rang, not just when they saw the food.
Similarly, Schultz’s results found that, at first, there was a spike in the dopamine
cells’ activity just after the juice arrived—the monkeys were responding to



reward. But as time went on, the spike started to come just before the juice—the
“reward” came with the flash. The actual arrival of the juice itself caused no
more activity.

It got more interesting still. If a squirt of juice came along without a flash of
light first, the dopamine cells’ activity would spike at the unexpected reward, as
before. But if the light flashed, but then the juice didn’t arrive, the dopamine
cells’ activity dropped, below baseline levels. The reward was expected, but failed
to materialize, and the monkey (or at least the monkey’s dopamine-producing
cells) was disappointed:
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This is the lowest-level version of the “your brain is a prediction engine”
model. At this very basic, machine-code level, your senses predict the world, and
when the world is as they predicted it, they don’t send any more signals. But
when the predictions are wrong, they send signals higher up.



This is crucial. At every level in the hierarchy, what we experience is what we
predict. Those predictions are checked against reality. If reality agrees, fine. If it
doesn’t, we have a prediction error, and then signals are sent further up.

Other studies?® have found that prediction error, rather than fulfilled
predictions, drives nerve signals. For instance, in the retinal ganglion, a bundle of
nerves in the eye, cells “signal not the raw visual image but the departures from
the predictable structure.”?: And even at this very low level, there seems to be a

Bayesian relationship. New information is integrated and becomes part of future

predictions in something like a Bayes-optimal fashion.22

We can flesh out the picture we built in the last section a bit more now. The
crucial bit is that the more precise the predictions, and the more precise the data
from your senses, the more attention your brain pays to them. All the time,
signals are coming down from your high-level processors telling your lower-level
processors what to expect. They translate the signals into lower-level predictions
again, and check them against the sense-data coming up from even lower-level
regions. At each level, the information from the level above acts as the
“prediction” and the info from the layer below acts as the “data.”

But it’s all probabilistic. Some perceptions and predictions are more
confident than others. The more confident predictions are usually called “high-
precision.” A perception of a cow standing in a field right in front of you, ten
feet away on a clear sunny day, is high precision. A glimpse of a dark shape seen
through murky water while you’re snorkeling is very low precision. A prediction
that a hammer will fall down when you drop it is high precision; a prediction
that inflation will be below 5 percent next year is very low precision.

At each layer, something like this is going on. It has its prediction from above,
and its sense-data from below. It uses Bayes’ theorem to put them together. If
the two roughly match, then the prediction is about right. (In more formal
Bayesian terms, if the likelihood data is close to the prior, then the posterior
probability won’t be very different either.) In that case, the layer doesn’t send
much in the way of signals up or down—it just sort of goes, “OK, then, seven of
the clock and all’s well.”



But if they disagree, it can go one of various ways. One, let’s imagine the
sense-data is very low-precision, and it disagrees with a very high-precision
prediction. You are walking across Hampstead Heath on a misty day and you
see, out of the corner of your eye, a hundred yards away through the fog,
something roughly the size and shape of a Cape buffalo. Your brain has a very
confident prediction that there are no Cape buffaloes in North London, and the
data from your eyes is messy and imprecise, so the predictions override the sense-
data. Imagine data with a very different mean to the prior, but a huge standard
deviation—a wide, flat curve on the graph, which doesn’t move the tall, narrow
curve of the precise prior much. The layer again stays quiet, with little signal sent
higher up.

Two, higher-precision sense-data disagree with the prediction, and the new
information does move the needle: the prediction is probably wrong, according
to the Bayesian equation. In that case, the layer has a prediction error, or
“surprisal.” It will therefore fire its neurons, alerting the layer above it in the
hierarchy. The worse the mismatch, the more strongly the neurons fire.
Extremely precise predictions being contradicted by extremely precise sense-data
—the clouds clear a bit, the sun comes out, and you look over toward Parliament
Hill and what the hell that actually is a Cape buftalo Jesus Christ—send a very
strong alarm to higher levels.

And when that higher level receives the alarm, the information acts as its
sense-data, and the whole thing goes again. The higher-level processor tries to see
if it can make sense of the information with higher-level models of the world. If
it can, then it gives new predictions to the lower levels to make it all fit together,
and doesn’t alert the higher levels; if it can’t, it sends another alarm even higher
up. At each level, the processors are reconciling bottom-up data with top-down
predictions, and either using them to make new predictions, which they send
back down the chain, or raising alarms higher up the chain when they can’t
make it make sense. The greater the mismatch—the more the prior is shifted—
the louder the gain, or “volume,” of the signal sent upward.

The key thing is that the brain hates prediction error. It wants to minimize
the difference between its predictions and its sense-data. It really wants its
predictions to be right. So it calls attention to mismatches so they can be sorted



out. Under this model, “attention” is literally just when the higher-level
processors and high-precision sense-data are focused on some aspect of your
environment. Something grabs your attention when the bottom-up data about
it coming from your senses doesn’t match the top-down prediction coming
from your brain—sending a loud, urgent signal right up to the top.

TENNIS, WORDLE, SACCADES

So far I’ve talked about perception as though it’s something that just happens to
us, as though we sit like a sea sponge, absorbing information from the outside.
To be fair, it’s easier to talk about perception like that, and when you’re trying to
build a basic model, that’s probably the way to do it. But we don’t behave like
that.

As well as simply absorbing information, we seek it out. We move around in
the world. We move our heads closer to things, or get up and walk over to
something to check it, or pick it up and put it in our mouths. We might get a
telescope to check whether that light in the sky is a planet or a star.

This gives the predictive brain two new challenges. First, predicting what the
effects of its own movements will be, and second, predicting what the best move
is to make in order to gain the most information possible about the world.

The Bayesian model of how this works is called predictive processing, and its
founding father is a neuroscientist called Karl Friston, who works at the
National Hospital for Neurology and Neurosurgery in Queens Square, London.

“People were fluently talking about the Bayesian brain hypothesis by about
1990,” he told me. “But it was really hijacked by the sense-making side, by the
perception side. People forgot about motor control, decision-making, the action
side of things—the way you actually go and gather your data. That brought a
very much broader problem to the table.”

Once again, we tend to think of perception and action as separate things. We
see the world with our senses, then we decide what to do, and then we do it. As
we’ve already established, though, we don r see the world, exactly. We predict the



world, and update those predictions in a Bayesian way through new
information.

The trouble is that the signals we receive from the world—the patterns in
which those nerve cells or the dopamine-producing cells and so on fire—are
dependent not just on changes in the world, but on changes in our bodies. If a
horizontal line of retinal cells fire in sequence, that could be because a bright
light has moved from right to left in front of me. Or it could be because I've
turned my head, causing a stationary light to move across my visual field. So our
brains not only need to predict the signals coming from the world—they also
need to predict how the signals coming from the world would change, if we
performed some action. Then they need to subtract those predictions from the
predictions of how the world itself is changing, to give the impression of a stable
reality.

But there’s more to it than this. The brain wants to reduce prediction error,
as we’ve seen. It can do that by changing its beliefs to match the world—I
believed there was hot coffee in my mug, I grabbed the mug, it was cold, I no
longer believe that. But it can also change the world in order to match the
beliefs. In that example, perhaps, you might go and refill the mug with hot
coffee. In the end, for Friston at least, we can rephrase 4// our mental activities—
even our desires and decisions—in the same terms as predictions.

That’s for later, though. For now, we’ll start with the simpler stuff.

First, there’s a direct sense in which action requires prediction. If you want to
move your arm, your brain has to predict which sequence of nerve firings will
perform that action. Or, to look at it another way, when your brain fires a
particular pattern of nerves, it has to predict what action your body will make.

These are two separate things, and, according to one model of action at least,
it turns out your mind does both. The first is called the 7nverse model, and the
second the forward model. “The inverse model is what signals I have to send to
my muscles,” says Frith. “It’s problematic, because you have a goal—I want to
reach and grasp something—but there are an infinite number of ways I could do
it.

“Meanwhile, the forward model is fixed. Given the signals you decide to send,
you can calculate exactly what will happen.” The two models, says Frith, work in



parallel—your brain runs both simulations simultaneously and checks them
against each other. So if you have some goal (pick up a coftee cup), your brain
predicts what sequence of nerve firings would do best at that, and at the same
time it takes the predicted sequence, predicts what would happen if you do it,
and sees if the two models match: “Does this inverse model actually result in this
goal that I’'m aiming for?”

This means, incidentally, that we can learn by imagining. We can imagine
ourselves doing some goal—right now, 'm imagining myself kicking a soccer
ball with the side of my foot—and by predicting which sequences of nerves
would achieve that goal, and then predicting what would happen if we fired that
sequence of nerves, we can genuinely improve at some task without actually
doing it outside our imagination.

But what’s also important is that our brain has to predict what sensations we
will experience if we make some move. If you’re running to catch a bus, the bus
will be growing larger, and bouncing up and down, in your visual field. But your
perception of the bus will be of a stable object of unchanging size, because your
brain has predicted the effect that the signals it sends to your muscles will have
on the signals it receives from your eyes.

Your brain then has to subtract those movements from the movements it
expects about the world. (If the bus actually is moving toward you as you’re
running, then you want to be able to see that the bus is moving.)

And your brain also performs actions that are not intended to complete any
given task themselves, but are meant to gain information about the world.

Here’s an analogy. You’ve probably played Wordle, since everyone in the
world has. If you haven’t, it’s a game where you have to guess a five-letter word.
You have six goes, and each time you have to enter one valid (US English) word.
If any of the letters in your guess are exactly right—the right letter in the right
place—that letter will go green. If the letter is in the word, but not in the right
place, it’ll go yellow.

There are about two thousand words in Wordle’s database, so your
probability of guessing right on the first go is about one divided by two
thousand, or p = 0.0005. You could just try to guess six random words, but
you'd only have about a 0.3 percent chance of getting it right.



So instead, here’s what I do: I try to gather information. I might put in a
word with lots of common letters, such as ARISE. Let’s say it comes back with

A RIS

How many words are there in the Wordle database that have an A somewhere

two hits:

in them and an E on the end? I don’t know exactly, but a few dozen perhaps.
Suddenly the probability I can ascribe to different words has changed
enormously. Instead of putting p = 0.0005 on all two thousand words equally, I
can put maybe 2 percent likelihood on, say, “PLACE,” or “LEAVE,” but 0
percent on “BRACE” or “GLEAM.”

What do I do next? If there are, say, fifty words left, then I could start
guessing, but still I'd probably only have a 10 percent chance of getting it right
(five guesses, fifty options). So I might want to narrow it down further.

If so, then some words are going to narrow it down more than others. I could
put RAISE in. But since I've already tried all those letters, the only bit of
information I could get out of it is whether the A is in the second place or not.
(And it probably isn’t: I bet there are more remaining words with the A in the
middle, like GLAZE or CRAZE, than in the second place, like LANCE or
MANGE))

The most commonly used letters in the English language are probably E, T,
A, O, LN, S, H,R, D, L, U. So you could go for another word full of those
common letters. I often go for DONUT. Or you might go for something with
only one vowel because you figure there are two already in there.

(I hope, by the way, that I don’t have to say, “Look, it’s Bayesian!” again by
this point. Your prior probability of it being any given word is 1/2,000; then you
get your new data, and you update to a posterior probability, precisely using
Bayes’ rule.)

The point is that there are moves you can make that you know won’t actually
tulfill the task—it’s definitely not DONUT, there’s no A or E in there—but that



provide you with information to do the task. Some moves are better than others.
One of them (at least) is the Bayes-optimal move, the guess you can make that
will reduce your search space the most.

I ended up guessing BOTHY and then CHAFE, for the record, which was
correct, but I think I probably got a bit lucky.

This idea of “Bayes-optimal design” goes back to Dennis Lindley, says
Friston. “If I had, now, to choose what data point to gather next,” he says,
“where to look next, what would be the best query or question?”

And that idea has become central to what Friston, Seth, and others talk about
when they talk about perception. The brain is not only passively perceiving, but
actively seeking out information to reduce its uncertainty in the world. “You can
frame it,” says Seth, “in terms of actions that are instrumental, to reach the
desired goal now, or epistemic actions that maximize the information gain.”

A marvelous example of this is saccades. As we’ve talked about, although it
seems like you see the whole of your visual field in glorious, colorful detail, that’s
not the case. Only the center of your retina, the fovea, can resolve images sharply
or see color. The rest is filled in—predicted—Dby your brain. (If you choose a
random card from a deck without looking at it and hold it out to the side and
behind you, then move it slowly into your visual field, you won’t at first be able
to tell whether it’s red or black.)

In order to fill in this detail, your brain moves the fovea around. When your
eyes move from one point to another, they do so in a rapid move called a saccade
(pronounced sack-ARD). They’re so fast that, to other human eyes, the pupil
seems to jump—you can’t see the movement, just a change of position.

But where do our eyes saccade to? One possibility would be that they jump
to the most salient point in the visual field—the brightest or most standout
objects, a red dot in a mass of green dots, or a single vertical line among a load of
horizontal ones. That would be a bottom-up model of perception, where the
details of the scene drive what we look at, and how we build our understanding
of the world.

That’s not what we do, though. Instead, through clever experiments,
researchers have shown that our eyes saccade to where we expect the action to be. If
you track someone’s eyes during a game of, say, tennis, the eyes don’t jump to



where interesting things are, but where the person anticipates they will be.
“Saccades are launched to regions where the ball will arrive in the near future,”

says one paper.-2-3- “Crucially, at the time that the target location is fixated, there is
nothing that visually distinguishes this location from the surrounding
background of the scene.”

Looking ahead like this to currently undifferentiated but soon-to-be
important places in the visual field allows the brain to reduce uncertainty as
much as possible. In tennis, for instance, the ball moves far too fast for our eyes
to track it smoothly. Instead, the brain predicts the most important,
information-dense points on the ball’s journey—when receiving serve, say, the
point of contact with your opponent’s racquet, the point at which it bounces,
and the point at which it meets your racquet. The science-y tennis blog Fault
Tolerant Tennis describes it like this: “Multiple times throughout a fast-moving
ball’s flight, you’ll execute the same visual pattern: Predict a future location of
the ball. Perform a saccade, fixating there before the ball arrives. Hold your gaze

on said point until the ball arrives. Track the ball briefly through your focus.

Repeat.”-z-f*-

Because the ball is moving through the foveal region of your visual field at
these critical moments, your brain is able to get the maximum possible amount
of information about its flight. If your prediction is wrong, it will be extremely
obvious. If it’s right, you’ll get lots of high-quality information about the ball’s
ongoing movement as it passes through your focus, allowing you to predict
where it will be at the next critical point (where your eyes will saccade to once
the ball leaves your focus).

Of course, this means that perception is in fact a highly skilled operation. I'm
a soccer fan, but I’'m also rubbish at soccer; I never played as a child, and so have
all the grace and fluency of Treebeard the Ent. But I also notice that it means I'm
not as good a soccer watcher as others. I can’t predict the body positions and the
contacts between foot and ball as well as my friends can, for instance—they seem
much more able than I am to tell when someone caught the ball beautifully on
their laces and when they awkwardly toe-punted it, presumably from years of
playing and seeing how contact on the laces or toes relates to subtle variations in
body position or how the ball comes off the foot.



That’s visible in research, as well. Learner drivers’ eyes tend to focus on the
road just in front of them, while seasoned drivers look farther ahead for

important details like junctions and hazards.2> Cricket and tennis players get
better at predicting where the ball will bounce. Novices aren’t good at predicting
where the action will be, so they have to make very imprecise predictions, while
experts have a well-constructed model that allows them to gather highly precise
information about the world. Just as a good Wordle player has to make good
judgments about which words will give them the information required to guess
the answer, a human brain has to know where to seek information to best carry
on building its Bayesian model of the world.

HOW COME SCHIZOPHRENICS CAN TICKLE
THEMSELVES?

Why can’t you tickle yourself?

Sorry. Let me rephrase that. Can you tickle yourself? I probably ought to ask,
because if you can, that might be important. Most people can’t. But, it seems, a
subset of people can.

In 2000, a paper was published in the journal Neuroreporz‘,-z--é- by the
neuroscientists Chris Frith, Sarah-Jayne Blakemore, and Daniel \Wolpert.I It
made a surprising prediction, and tested it. The prediction was that people who
suffer from schizophrenia can tickle themselves.

The reason they predicted that has to do with Bayes’ theorem.

We’ve seen that our experience of the world is actually our prediction of the
world—our Bayesian prior—rather than the content of our senses, although it is
constrained by the data from our senses. A crucial part of how that works is that
we pay less attention to sense-data that we can accurately predict. Remember, if
you’re a being that moves around in the world, sometimes changes in your sense-
data will be caused by changes in the outside world, and sometimes they’ll be
caused by your own movements. You need to be able to tell the two apart, and
discount the latter, so that you get a sense of a stable world that you can detect



movement in. (When you run or walk, you don’t get the sense that the world is
bouncing, even though all your sense-data is compatible with the hypothesis that
it is.) The highly predictable signals are subtracted from your sense of the world.
“When you move,” Frith says, “the movements you cause are suppressed, leaving
the movements that you have not caused, which are usually more important.”

That’s also why, incidentally, we tune out background hums, and why we
suddenly notice them if they stop; also why if there’s, say, a repetitive piece of
music that plays over and over again, with the same four-beats-to-the-bar
rhythm, and then after twenty minutes it misses a single beat, you’ll hear the
absence almost as a positive noise. The background or repetitive sounds are
highly predictable and so your brain predicts them and starts ignoring them. If
they stop unexpectedly, that’s zot predicted, so it’s very obvious.

Anyway. This is true in all our senses. There was a neat experiment that

shows it with touch.?Z People were arranged in pairs and asked to rest their left
index finger on a board. On top of the board was a device that pressed down
onto that finger, controlled by the other player. The two players would take it in
turns to press a button. The harder they pressed the button, the harder the
device pushed down on their opponent’s finger. The task was to match the force
the other player had used.

Each time, players overestimated how much force their opponent used,
meaning that the pressure used escalated each turn. They also looked at what
happened when a machine pressed down on someone’s finger, and they were
asked to match the force used by pressing on their own finger with the device.
Again, they consistently overestimated the force required. (The authors
speculated that this mechanism explains why children’s playground fights tend
to escalate—each child honestly believes that they are only hitting as hard as they
were hit.)

But when people were asked to do the same using a joystick to control the
device instead of a button, so the force was harder to predict, people got better at
correctly judging how much force they were using. That’s consistent with the
idea that we discount strongly predicted sensations: we just don’t feel them as
much.



So, tickling. The same applies. If you try to tickle yourself, your brain can
predict the sensations it’s going to receive, with very high precision. If you were

to stroke my palm and record my brain activity while you did so, you'd see a

sudden spike in the number of neurons firing in the relevant bit of my cortex.23

But if T were to stroke it myself, there'd be very little increase. “When you touch
yourself,” says Frith in his book, % entirely deadpan, “your brain suppresses your
response.”

Here’s an interesting thing. People with schizophrenia are less susceptible to
many optical illusions than the average person. The “hollow mask” illusion, for
instance, can be used as a diagnostic tool—one study found that about 30
percent of schizophrenic people see through the illusion, compared to 10
percent of the general population.-3-Q If you’re a medic dealing with a difficult-to-
diagnose case that might or might not be schizophrenia, it’s worth checking if
your patient sees the hollow mask as convex or concave.

What appears to be going on is that schizophrenics have weaker priors than
we do. Their predictions of the world are less precise, so they can—for instance
—correctly assess a backward mask as hollow when the sense-data fits that
hypothesis.

Unfortunately, that has other, less beneficial effects. For instance,
schizophrenics often report that their body is under the control of some outside
force—that when their arm moves, it’s not them who’s moving it. Frith tells a
story in his book of a patient called PH. “My fingers pick up the pen,” she says,
“but I don’t control them. What they do is nothing to do with me.”3L

The Bayesian explanation is that PH’s predictions of how her arm will move
are less precise, so that when she moves her arm, that movement is not
“subtracted” from her experience in the same way it would be for a neurotypical
person’s. She experiences the movement unsuppressed, just as if someone elsse
were to pick her arm up and move it for her.

It also explains visual and auditory hallucinations. Schizophrenic people
often report hearing voices in their head: “thought insertion.” But under this
model, they’re just hearing the voice all of us, or at least most of us, hear—our

own internal monologue.-l-I The difference is just that, for most of us, those



voices are predicted, and therefore, the sensation is suppressed, like with the
moving arm. But for schizophrenics, it’s as shocking and as loud as if someone
spoke inside their mind.

And small visual disturbances that generate minor low-level prediction errors
might get explained away by higher-level processors in neurotypical people,
because their priors are strong enough to say, “Come on, faces don’t point
inward,” or whatever. They would predict visual changes from moving their
head, or noisy data coming in from their blotchy retinas, and suppress it in the
usual way.

But schizophrenic people, with their weaker priors, don’t predict the world
so precisely, so that same data coming in causes prediction errors, raises alarms,
and gets incorporated into their model of the world. And because the errors are
random—they’re not generated by real things in the world but by noise in the
sense-data or by unpredicted movements—the brain has to come up with bizarre
hypotheses to explain them. Perhaps the pulsing of blood through the veins in
our retinas makes rhythmic changes in the sense-data we all receive, but most
people predict it and suppress it. Schizophrenics, though, might have to explain
it as “The walls are breathing.”

I’ve been talking about relatively low-level predictions here, but the same
seems to apply to higher-level concepts—schizophrenic people might get
inappropriately surprised that someone with their first name is mentioned in the
newspaper, or that they saw a car with a license plate that has the number
thirteen in it, or whatever. Because it’s caused a prediction error, it has to be
explained away with hypotheses, and that creates delusions, such as that the TV
Or newspapers are giving them secret messages.

You may now be able to see why I brought up tickling. Most of us can’t tickle
ourselves because we can predict the sense-data that we will receive so accurately
—a finger tickling us bere at this moment, another one here—and those
predictions are subtracted from our experiences. But schizophrenic people
apparently don’t have such precise predictions of that data. So—Frith,
Blakemore, and Wolpert hypothesized—they should be able to tickle themselves.
Or to be more specific, they predicted that people who experience auditory
hallucinations and other symptoms of schizophrenia are more likely to say that



stroking their own palm gives just as “intense, tickly, and pleasant” a sensation as
when someone else strokes it.

And that’s exactly what they found. People with symptoms of schizophrenia
were just as susceptible to tickling themselves as they were to other people
tickling them.

“What I love about it,” says Anil Seth, “is it’s a very unexpected prediction.
Who'd have thought that this would be characteristic of schizophrenia? A
Freudian wouldn’t come up with this hypothesis. The only way to come up with
it is by thinking about the brain in this [Bayesian] way. And for me that’s the
merit of a good theory—it makes predictions other theories wouldn’t predict.
Like relativity. My personal bugbear is people coming up with theories that are
consistent with everything. Make it predict things! The schizophrenia thing nails

»

it.

HAVE YOU EVER, LIKE, REALLY LOOKED AT
YOUR HAND, MAN?

This is more speculative, but there’s a growing body of thought that believes you
can talk about depression in Bayesian terms. More than that, some scientists
think that you can treat various psychiatric conditions, including depression,
with psychedelic drugs like magic mushrooms, and that they work in a Bayesian
way.

I don’t want to put too much weight on this. I think there’s plenty of
evidence that the brain is Bayesian, and if it turns out (as it may well, still) that
psychedelics are not effective antidepressants, then that won’t undermine the
general point. But it’s a lovely, neat hypothesis and has some preliminary
evidence for it, so let’s go through it.

First, there’s some evidence showing that psilocybin—the active ingredient in
magic mushrooms—reduces depression. There was a 2021 paper—3--2- that found
that psilocybin was as effective as escitalopram, one of the most effective existing
antidepressants. Now, we should be careful: it was a small trial, and (for obvious



reasons) it’s quite difficult to do a “blind” trial of psychedelic drugs. A “double
blind” trial is when neither the patients nor the administering researchers know
who gets the treatment and who gets the control. It’s meant to reduce the
impact of the placebo effect. But if you suddenly start hallucinating, you’ll
probably have some idea that you got the good stuff. The researchers included a
clever trick, which was to give the control group a tiny dose of psilocybin, too
small to have an effect, in the hope that it would leave people with some
uncertainty. But it probably wouldn’t have confused people very much.l

At least four other studies®? have found similar results, but (1) they all suffer
from the exact same problem (“I’m pretty sure I’'m not on the placebo, Doctor;
you appear to have turned into a camel”); and (2) the slight trouble with any
studies in this area, like studies into, say, homeopathy, is that the sort of person
who wants to study psychedelics is often the sort of person who really wants to
prove that psychedelics are good. There’s a thing in science called the “researcher
effect,” which is that researchers have an amazing (even if subconscious)
tendency to find things they really want to find.

Anyway. The Bayesian model of depression is that it is caused by
inappropriately strong priors on some negative belief, perhaps about how you
are a bad person or how powerless you are or how bad everything is. (Depression
can take many forms.) The metaphor the researchers use is of a “landscape” of
beliefs: a landscape of rolling hills and valleys, but also sheer mountains and
plunging chasms. “You” are a little car on the landscape. You want to get as low
down as possible on the landscape: the lower you are, the “truer” your beliefs are
(or to be more precise about it, the more accurately your beliefs match your
experience, or the less prediction error you have). You naturally roll downhill,
but you can go a bit uphill if you get a “push” with evidence.

Very strong beliefs—“Faces point outward,” “The sun will come up
tomorrow,” that sort of thing—are very deep valleys, with very steep sides. You
need a lot of evidence to push you out of them. Weaker beliefs about whether or
not your coffee cup has coffee in it can be overcome with less evidence.

The trouble comes when you get stuck in a little local hole that matches your
evidence somewhat well, but not as well as a much deeper valley next door. Then



you have an “untrue” belief, or, if you prefer, a suboptimal belief that does not
predict incoming data as well as an alternative.

That’s not such a huge problem if the strength of your belief is
commensurate to the evidence. But if your priors are inappropriately strong,
then the “valley” will be inappropriately deep, and your little belief-car won’t be
able to climb the sides, even with lots of good evidence.

That’s apparently what might be going on with depression. Your prior
probability on some untrue belief, something like “I am a terrible person and
everyone hates me,” is inappropriately high. Your little car can’t get out of the
belief valley and into a more accurate valley, in which you are a pretty standard
person about whom people have the normal range of opinions.

Evidence that comes in that could prove otherwise—people telling you that
you are a nice person and they love you, for instance—gets discounted, because
your prior beliefs are so strong that (as you’ll remember from the section on
multiple hypotheses in chapter 3) the “I am not terrible” explanation is
overwhelmed by alternative explanations, such as “This person is lying to make
me feel better.” It will be essentially impossible to get out of the hole.

“You have an excessive precision-weighting of priors,” said Robin Carhart-
Harris, a neuroscientist at University of California San Francisco and one of the
researchers in the paper mentioned above, when I spoke to him a couple of years
ago. “Or, in a more human way, you’re too confident in some pathological belief
or bias.”

Now, psychedelics. They’re unusual drugs. They don’t particularly make you
happy or energetic or anything; they just make you really interested in things.
They make the world feel unfamiliar. “Have you ever, like, really looked at a tree,
man?” That sort of thing.

What they do, in this model, is to flatten your priors. You never really Jook at a
tree, or your hand, or whatever, because you have very strong prior beliefs about
what trees are like, and those beliefs very successfully predict the information
that will come from looking at a tree, so your brain basically discounts them.
“Familiar thing, accurately predicted, move on.”

But if your prior beliefs are made less precise, less confident, then the data
coming from your senses will be upweighted. Suddenly the back of your hand is



absolutely fascinating. And weird noisy variations in the data—things that your
brain normally explains away—get flagged as important things to pay attention
to, so you get impressions like the floor is breathing or faces are staring at you
from the wallpaper.

This is all stuff you’ll remember from the section on schizophrenia earlier in
this chapter. Same idea, really. What’s important, though, is that 7z theory, if you
give a depressed person psilocybin, it will flatten their belief landscape—weaken
their inappropriately strong priors on their own terribleness, or whatever the
particular belief is. So, combined with therapy that encourages the patient to
realize that they are not so awful after all, it allows the little car of belief to leave
the valley of depression and move into the “truer” valley in which the patient is
not so terrible, where (once the drugs wear off) they will hopefully remain.

(Yes, in theory, you could flatten your priors and move out of a nice true
valley into an adjacent, less true one, and cause yourself delusional beliefs.
Carhart-Harris told me that was rare, but possible, so it was important to take
the drugs under expert supervision.)

As I said, treat this with a certain amount of skepticism. This particular
model of depression may or may not be right—I've also seen suggestions that
depression can be understood as #nderconfidence in neural predictions—and
whether psychedelics will end up having any real impact as psychiatric drugs
remains to be seen. Even if they do work, there are huge societal and regulatory
obstacles—it’s hard to get licences to do the research, and prescribing them
would be illegal under current laws in the US and the UK. But they’re a neat
application of the Bayesian brain hypothesis in a real, clinical situation.

GOD HELP US

There’s a post by Scott Alexander, himself a psychiatrist, a cult-of-Bayes fanatic,
and an all-round very clever man, called “God Help Us, Let’s Try to Understand
Friston on Free Energy.”?-zf

Friston, as mentioned, is probably the greatest pioneer of the predictive

processing/Bayesian brain model: if you read any scientific papers in the area,



you'll keep bumping into references saying “(Friston, 2009)” and “(Friston,
2006).” But his work is also famously difficult to understand. There’s even a
parody Twitter account, @FarlKriston, dedicated to not understanding him.

Friston takes the Bayesian brain model further. So far we’ve talked about
predictive processing as explaining how we make sense of the world—What do
these ambiguous nerve signals mean? What’s the best way to move my eyes in
order to gather information?—that sort of thing. For Friston, though, it explains
—or at least describes—a lot more than that. Minimizing prediction error isn’t
just sense-making. It is, in this model, our fundamental motivation. Hunger,
sexual desire, boredom—all our wants and needs—can be described in terms of a
struggle to reduce the difference between top-down prediction and bottom-up
sense-data, between your prior and your posterior distributions.

And yes, this does sort of mean that “being hungry” is the same as
“confidently predicting that you are currently eating a sandwich but that
prediction being wrong.”

More than this: this is, according to Friston, the fundamental driver of 4//
life. A bacterium, a mouse, a whale—they’re all trying to, in a mathematical
sense, reduce the difference between what they predict and what they experience.

Friston talks about “free energy.” It’s a term from physics—people use it
when they’re talking about thermodynamics or quantum mechanics. In
thermodynamics, it means the amount of energy available to do work, say in a
steam engine.

But the same math can be used to describe information theory. In that case
free energy is what we’ve been talking about in this chapter: prediction error.
Your brain hates prediction error and wants to minimize it.

It seems incredibly obvious that that’s not 4// your brain wants. You don’t
just care about knowing things. When you jump out of the way of an oncoming
bus, it doesn’t seem to make sense to say that you are predicting that you’re not
getting hit by a bus. You just don’t want to be hit by a bus. But Friston disagrees.

Imagine a primitive single-celled organism. Its most fundamental goal is to
keep the stuff that’s inside it different from the stuft that’s outside it.

In a sense, that’s all that life is. Any system, left to its own devices, tends
toward uniformity. A hot drink cools to room temperature, and slightly warms



the room as it does so. A cold drink warms up. A balloon slowly deflates until it’s
the same pressure as the atmosphere. That’s entropy. Organized systems have low
entropy, disorganized ones have high entropy. The universe naturally tends
toward entropy. An organized system—Ilike a cold drink in a warm room—
becomes disorganized and uniform.

But if a living thing did that, it would die. Being the same as your
surroundings is the same thing as being dead. If my body reverted to ambient
temperatures, if the concentrations of chemicals inside my body were the same
as outside my body, then I would no longer exist. That’s true of anything living.
So any living or self-organizing thing must work to maintain a boundary
between itself and the universe. It must maintain the right temperature, the right
pressure, the right mix of chemicals on the inside of the boundary. In other
words, it must minimize entropy.

A very basic single-celled organism won’t make complicated predictions like
“Faces tend to point outward.” But it needs to maintain chemical
concentrations, fluid pressures, temperature, and so on at levels that allow its
internal processes to work. It can’t directly read them—it behaves like the
Kalman filter we mentioned earlier in this chapter. Instead, it relies on indirect
evidence. Say, if it’s trying to estimate its internal salt concentrations, it might
predict the number of sodium ions passing across its cell membrane per second
or something. (Not consciously, obviously; in an algorithmic way.)

What’s crucial, though, is that the organism can only survive if these
predictions are correct. It can’t update its model and say, “Ah, looks like I’'m
severely hyponatremic, better change my predictions of how many sodium ions I
expect to pass across my membrane.” If it does so, it will rapidly die.

But there are two ways of reducing prediction error. One is changing your
prediction, sure. Another is changing the world so it matches your prediction.
So the bacterium might metabolize some food, or flail its little flagellum around
and get moving until it’s somewhere with a higher sodium concentration.

In this model, “desire” and “prediction” are the same thing. The bacterium
wants to reduce its prediction error (or “free energy”), for whatever it’s
predicting. If it happens to be predicting the weather that day, and its



predictions are false, then it can update its model, and next time it will make
different predictions.

For life-critical predictions, though, its predictions must be fixed. You cannot
change your model of what your body temperature is or what your glucose levels
are, outside very narrow windows. So the only way of minimizing prediction
error is by changing the world, or your position in it, so that your predictions are
true.

For Friston, that’s what’s going on in a// self-organizing systems. We’ve been
talking about bacteria, but a human has the same thing. We need to maintain
homeostasis—a clear distinction between our selves and the universe, and the
“self” bit within very specific thermodynamic and chemical limits. What more
sophisticated animals, like humans, can do better than bacteria, though, is to
manage their surroundings with an eye on the future, to avoid ending up in
situations where their predictions of “having enough oxygen” or “not being on
fire” might stop coming true. In mathematical terms, we want to minimize
expected prediction error, or expected surprise.

“You can talk about homeostasis versus allostasis,” says Friston. Homeostasis,
as we’ve seen, is adjusting your surroundings and your body to maintain a stable
internal environment: if your blood sugar drops, your brain orders your
pancreas to release more insulin, for instance. Allostasis, he says, is “deliberative
planned behavior to avoid having to make sort of homeostatic corrections.

“Let’s say I feel hungry,” he says. “I’'m not hypoglycemic, but say I roll out my
plans into the future, for example imagining that I carry on working, then given
my model of my own body, I work out that I'll be hypoglycemic in half an
hour’s time. So I evaluate another plan: I’'m going to go and have a nice, sugary,
creamy cup of coffee.” That other plan reduces the surprise he would expect to
feel, because the likeliest future doesn’t include his body going into
hypoglycemic shock.

To reiterate: according to the free energy model, your brain treats predictions
like “I won’t get wet if I go outside” and “I will not go into hypoglycemic shock”
just the same. It wants to minimize the surprise it receives from those predictions
being wrong. But the difference is that if new information comes in that suggests
your brain is wrong about getting wet—you see that it’s raining, for instance—it



has two ways of dealing with it. It can change the world so that its predictions
are true, by grabbing an umbrella, or it can change its predictions so that they
meet the world, by accepting that you will get wet. It can update its priors.

In the hypoglycemic shock situation, it can’t. You have certain, deeply wired
priors about the state of the world that will not change. But still,
mathematically, it can be treated the same—as prediction error.

These very fundamental priors are wired into us by evolution, Friston says.
We don’t know exactly which ones they are, although blood sugar levels, body
temperature, oxygen levels, and bodily integrity are obvious ones. (Presumably
social and sexual desires are hardwired to some extent too, even if they only come
online later on.) And as young children, the hardwired priors are the only ones
we have—we predict that we will not be hungry, or cold, or injured. “If you’re a
neonate, you start to learn that when I get these signals, and I cry, Mum appears.
They’re all these things that have to be learned. And you can learn these
preferred states of being that you can work toward, which are constrained by
these innate priors underneath them, which keep you alive.”

Minimizing free energy means changing your state to avoid prediction error,
but it also means trying to find out as much as you can about the world in order
to make better predictions: finding the optimal move to make next to gather
information, like the Wordle guesses that are intended to rule out letters rather
than be a guess in their own right. You can minimize prediction error by
generating better models of the world.

There’s a process called “motor babbling” that babies do, which is essentially
trying out random nerve signals and seeing what happens. Does my leg move?
Does my eye twitch? Do I hiccup? “It’s a beautiful example of maximizing
expected information gain, of learning the nature of the world,” says Friston.
“What am I in charge of? And what am I not in charge of? Who caused that, did
I, did you? They’re learning you’ve got a body and certain things you can control
and certain things you can’t.”

At first, because babies have so little information, their movements are
random. They learn as they “babble,” and their movements become increasingly
sophisticated: they update their priors with each new bit of data. I have a
newborn niece, ten weeks old at the time of writing, and you can see this process



week by week: her eyes fixing on faces, her hand successfully grasping things. As
she finds that she can minimize free energy by doing certain things—moving
hands to grasp food; feeding herself with different kinds of food; choosing which
brand of pizza to buy—her preferences will become more sophisticated.

“As you get older, and accumulate preferences, you get more skilled in
navigating your body through the world,” says Friston, “until the point that you
can start planning months ahead to meet somebody in a restaurant in a different
city.”

And this is—according to this model—all exactly the same, mathematically,
as what the bacterium is doing when it predicts high sodium ion levels, notes a
prediction error, and moves to find more sodium. It’s just that our models of the
world are deeper and more sophisticated and able to look further ahead.

“The difference between, say, a virus and you and me is how far into the
future you can look. We have hierarchically deeper generative models, and what
accompanies that is the ability to roll out further into the future.”

The way to think of us, says Friston, is as nearly perfect scientists. We want to
learn about the world, build better and better models of it, looking in the places
that will get us the most information, minimizing the difference between the
signals we predict we’ll receive from the world and the signals we actually do
receive. Except that on a few crucial points, we don’t want to learn what
particular states are like. If we were purely truth-seeking, purely curious, we'd be
just as keen to learn what it feels like to hold our hand in a fire, or go without
oxygen for two days, as we are to find out what blue cheese tastes like. If we
predicted that the best way to gain information about the world would be to
stab a fish fork in our eye, then we would do that. But because we have these
hardwired prior predictions, and it would lead to huge prediction errors, we
won’t do that. “We are all crooked scientists,” Friston says. We’re Bayesian
prediction machines, but some of our priors can’t be changed, because if they
were, we'd die, and dying doesn’t help us find things out—so we have to change
our environment so that those priors remain correct.

I want to be a bit cautious here. I love the idea of free energy, and I hope I've
captured it well—it is, after all, famously complicated. But Friston himself
would say, I think, that it’s a framework that lets you do math, rather than a



scientific theory in its own right. You don’t zeed to frame everything in terms of
predictions and free energy and information gain—you can just say that we have
desires, and those desires often involve not dying. Free energy allows you to
simplify the model, use just one term for everything, so it wins Occam points,
but that doesn’t make it 7ight, and some people just find it weird to suggest that
hunger is the same as wrongly predicting that you’ve eaten. But it’s an elegant
theory.

Now I want to sum all this up, from Bayes in science to the Bayesian brain,
and to show you how once you start noticing Bayes’ theorem, you see it

everywhere.

I. A self-indulgent aside, but I feel there’s something rather Bayesian to note here. Chris Frith’s
;vife Uta, Sarah-Jayne Blakemore’s father Colin, and Daniel Wolpert’s father Lewis are or were all
giants of their various fields: respectively, psychology, neurobiology, and developmental biology.
What are the chances that the three authors of one paper would all have famous scientist
relatives? If we use the base rate of famous scientists in the population, astronomically low, but if
we remember that jobs often run in families, somewhat higher. Still, pretty remarkable, I think.

I1. Apparently we don’t all actually have an internal monologue, which I find very strange.

IIL T should also point out that the psilocybin was administered under careful laboratory
conditions, under medical supervision, and alongside therapy, to people with long-standing,
serious depression that had not responded to treatment. Please do not read this as saying that
you should go and treat any mental health conditions you may have with psilocybin you got oft a
guy at a house party.



CONCLUSION

Bayesian Life

As we said at the beginning: If you think you’ve found a theory of everything,
diagnose yourself with mania and check yourself into a psychiatric hospital.
(Mania, of course, can be described in Bayesian terms: some papers suggest that
it’s to do with pathologically high confidence in your brain’s predictions.*)

Do I need to check myself in? I hope not. But oz the other hand, I do seem to
see Bayes everywhere I look, from the small to the big.

Here’s something small. Your email account is Bayesian. If it weren’t, your
inbox would be even more full of nonsense than it already is. Depending on who
you ask, somewhere between 35 and 70 percent of all emails sent in the world are
spam: that is, unsolicited ads. (I just checked my Gmail account and I've received
ten non-spam and seven spam emails so far this morning, so that’s 40 percent,
which fits.) Let’s say it’s S0 percent.

A spam filter takes that as your prior probability and updates with new
information. For instance, it might be that 20 percent of spam emails contain
the phrase “penis extension,” whereas only 5 percent of non-spam emails do.

So if your filter were to see a million emails, it would expect to see five
hundred thousand spam and five hundred thousand not-spam emails. Of the
spam ones, about one hundred thousand would contain the phrase “penis
extension,” while of the non-spam ones, about twenty-five thousand would.
Your spam filter would, therefore, judge that a given email with the phrase “penis
extension” in it has an 80 percent chance of being spam. If it contains words like
“act now,” “porn,” or “low-interest loan,” your filter would further update. If an
email reaches a certain threshold for spam-probability, it will get bumped into



your spam folder. This is explicitly how spam filters work: Google “naive Bayes
spam filtering.”

Now here’s something big: evolution. The astronomer Fred Hoyle once said
that the chances of evolution successfully producing life were similar to the

chances of a whirlwind passing through a junkyard and creating a Boeing 7472
But he misunderstood evolution, which is not random. He was right that the
number of ways in which the component parts of a 747 could be arranged are
unfathomably huge; if you put them together at random, the chances of making
something that could fly are tiny. Similarly, if you took apart the body of, say, a
fruit bat, right down to its cells, and then put them back together at random, the
chances of making something that flew (and fed itself, and reproduced) would
be infinitesimal.

In reality, though, evolution does not put things together at random. It
searches through the space of possible arrangements, through the non-random
process of natural selection. If you have a simple, self-replicating thing that
makes copies of itself with occasional small, random mistakes, then copies that
are better at replicating will tend to make more copies; copies that are worse will
tend to be eliminated.

You can (of course) see this as a Bayesian process. Remember the beeping box
that told you (imperfectly) whether you'd got a winning lottery ticket. That
allowed you to search the space of lottery numbers. At first, as far as you’re
concerned, all 131,115,985 are equally likely to be the winning one; after you’ve
run the box over them all, you narrow your search space to a quarter the size. It’s
an optimization process, moving through the vast space of possibilities to reach
the target you actually want.

Evolution works in just the same way, albeit much less efficiently. There’s an
equation, Price’s equation, which says that the frequency of some characteristic
in a population will change according to how much that characteristic is related
to “relative fitness,” i.e., how well the organism reproduces. To take a simple
example: if gazelles that can run faster are more likely to survive because they are
less likely to be eaten by lions, then on average, you’ll expect to see more fast-
moving gazelles surviving through to the next generation.



You can see the genome of an organism as a “prediction” about the world. If
your genes build fast-running legs, they’re predicting you will be born into an
environment full of fast-running predators (or prey). If your genes build a short,
tough beak for cracking nuts, they’re predicting you will be born into an
environment that contains a lot of nuts. If your genes build long, piercing
canines for gripping wildebeests’ jugulars, it’s a prediction that your
environment will contain wildebeests. It’s also a prediction that the rest of your
genes will form a body that is useful for those attributes: piercing canines would
be no use to an earthworm or a yew tree.

The frequency of a gene in a population encodes a prior probability. The new
data, the likelihood, come when the organisms built by the genome containing
that gene either survive and reproduce or don’t. If many copies of the gene make
it into the next generation, that’s evidence that the gene is suited to its
environment. If few do, that’s evidence that it’s not. Weak evidence, either way
—a gene can be deleterious to survival but survive through lucky association
with other genes, or it can be very useful but through misfortune be born into a
creature that gets hit by an avalanche—but evidence, nonetheless. Evolution is
slow, blind, and inefficient—it might take hundreds of generations to solve a
problem a human designer could solve in an hour—but it’s an approximation of
a Bayesian process: it works to minimize prediction error.

But then, everything decision-related is Bayesian. It simply describes the
optimal way to integrate new information with your prior best guesses. When
you look at it like that, so many things seem to make more sense. Confirmation
bias, for instance: we’re told that people are more likely to trust evidence that
supports what they already believe. It sounds bad, and sometimes it can be. But
most of the time, it’s just good Bayesian reasoning. If my friend tells me they saw
a fox in North London, I'll probably believe them, because foxes are pretty
common in North London. If my friend tells me they saw a Cape buftalo, I'll
assume they’re joking, or unwell, unless they provide me with some pretty solid
evidence. The only difference is that my prior probability on the presence of
Cape buftaloes is low.

Now, as it happens, I think that prior probability estimate is pretty good, and
most people would probably agree. But when we talk about confirmation bias,



we’re usually talking about disagreements where people disagree quite strongly.
If you have a strong prior that vaccines cause autism, then you will be more
skeptical of evidence that says they don’t. Most people reading this would
probably think that prior is inappropriate, but if you have it, it might take a lot
of very good evidence to move, and—if it’s strong enough—it might be all but
impossible to shift it, because alternative hypotheses such as “mainstream science
is lying to us” start out with higher probabilities.

It also explains why we might trust some people more than others. You see
studies every so often saying that people will judge the same speech differently if
they’re told it was given by a Republican than if told it was given by a Democrat,
and this is seen as a demonstration of our fundamental irrationality. But again
it’s perfectly rational, if you think that people have different priors on the
trustworthiness of different political parties, and therefore of people associated
with those parties. For a Republican, Pete Buttigieg or Joe Biden saying
something might be a low-precision update, a wide, flat likelihood curve on the
graph, and would shift the Republican’s prior beliefs only somewhat. It could
even be anticorrelated: you might be /ess likely to believe some controversial
statement if someone you deeply distrust claims it.

Or: a study came out toward the end of 20223 that found that peer reviewers
in science were more likely to accept papers for publication if they saw that they
were written by Nobel-winning authors than if they were written by novices.
That might not be ideal—in theory, at least, science shouldn’t rest on
reputations—but it’s rational: if you have two scientific papers in front of you,
and you know nothing else about them other than that one was written by
Albert Einstein and the other by Cletus B. Nobody, you’ll have a higher prior
probability that the first one will be good. Once you’ve read the papers, if they
both seem pretty good to you, then you’ll update toward accepting them. But
unless you have fotal confidence in your ability to judge the paper entirely on its
merits, then the new data won’t completely wash out your prior probability, and
you’ll still judge the Einstein paper as more likely to be good.

The statistician George Box, he who sang “There’s No Theorem Like Bayes’
Theorem” at the first Valencia conference, had a saying: “All models are wrong,

but some are useful.”* He was thinking of statistical models, of the economy, or



of climate change, or whatever. You can model the behavior of a gas with the
ideal gas law, he said, and it will be wrong—it won’t perfectly match what
happens—but it might be close enough to be useful.

But the point is wider. We all have models of the world in our heads. The
models contain quotidian things like doors and spouses and coffee shops, and
more abstruse things like planetary orbits and international trade and viral
vectors of transmission.

Models make predictions. Mine predicts that the door is behind me and will
open when I twist the handle; that my wife would rather watch Moonlight than
Dune once the kids have gone to bed; that the XBB.1.5 Omicron variant, which,
at the time of writing, is dominant in the United States, will also become
dominant in the UK, but will not cause a major wave of deaths and
hospitalizations in our highly vaccinated population.

All those models will be imperfect. I won’t have exactly the right weight of
the door in my mind, and my model of my wife’s tastes and preferences is
revealed to be indifferent at best every Christmas. My understanding of how
viruses spread and of the human immune system is thin. But the extent to which
those models are any good is the extent to which they predict the world. And I
update them each time new information comes in. If XBB.1.5 does cause a wave
of severe disease, then I’ll have to reassess my model.

So it’s all predictions, and the interesting thing is prediction error. A
confident, precise prior that is contradicted by precise information coming from
the world should result in a radically changed posterior probability. And the
degree to which you should change your beliefs is dictated by Bayes’ theorem.

What I hope I’'ve shown in this book is that this is true all the way up and
down. It’s true of conscious, explicit predictions like the one about the new
variant or whether a soccer team will win, but it’s also true of our informal
predictions of other people’s behavior or how a ball will bounce.

Fascinatingly, it’s also true much more deeply. Our perception of the world is
one of constant predictions, tested against the evidence from our senses. We
hypothesize that a small point of light is from a small, nearby object, or that a
certain mid-gray color on our retina is caused by a dark object under bright light.
We test those predictions by gaining new information, by moving our heads or



inspecting the object. And even at the very lowest level, the human brain seems
to work by predicting the number and pattern of nerve firings it expects,
rewarding itself with dopamine when those predictions are close to reality, and
punishing itself with an absence of expected dopamine when they’re not.

The exact details of the hypothesis may change. Perhaps the active
inference/predictive processing model is wrong in some important way. But the
brain clearly does work by making predictions and updating them. And what’s
more, this hypothesis makes so many things make sense. Optical and auditory
illusions, hallucinations, dreaming, mental illness.

There’s a thing called a “flow state,” when you’re doing some activity, playing
an instrument, playing sports or a video game, painting, whatever, and it just
seems to work: that’s when your predictions are high-precision and they’re
coming true every time. When on a dark street you briefly mistake a mailbox for
a person, that’s your brain forming a hypothesis from noisy data. When you find
your eyes suddenly drawn to someone with a facial disfigurement, you’re not
just being rude: your brain has strong priors about what faces look like, and
when those priors are confounded and it receives prediction errors, it seeks more
information.

It explains why, as we get older, we get more set in our ways. When we’re
young, we have very little data about the world, so our priors are weak and new
information can shift them easily. We can learn quickly, because we don’t have a
very precise model of the world that makes good predictions. As we get older,
though, we gain more information, we get a richer, more precise model of the
world, and new information must logically shift our priors less. So older people
(to quote Friston) “are wise, but inflexible.” You can predict the world much
more accurately when you’re older, as long as the world doesn’t change. But if
the world does change, you need much more information in order to shift your
preexisting beliefs. Hence the tropes that dads end up getting their kids to help
them set the video recorder.

Even consciousness itself makes more sense in a Bayesian framework. We can
think of our experience of the world as our predictions of the world, our
Bayesian prior. It doesn’t solve the hard problem of consciousness, but it seems

to give us an interesting place to look.



This prediction-testing model also fits in perhaps the highest-level thinking
that humans do: science. Science is explicitly about making predictions—
hypotheses—and testing them; Helmholtz and Gregory used science as a model
for human perception. The problem is that, in science, we like to think that
there is an objective truth out there, and the Bayesian model of perception is
explicitly subjective. A probability estimate isn’t some fact about the world, but
my best guess of the world, given the information I have.

But if we want to ask questions like How likely is it that my bypothesis is true,
given this new data? we have to use prior probabilities—we have to be Bayesian
—and the only way of having prior probabilities is to use subjective estimates.
That doesn’t mean they can be pulled out of thin air—there are more and less
reasonable priors to hold, and we can check whether ours are reasonable by
crowdsourcing them and checking whether our discoveries would stand up if
we'd started with somewhat different priors. But they’re still our imperfect
guesses about the real underlying facts of the world.

That doesn’t mean that science can’t know anything, or that it’s all perfectly
postmodern. It just means that, once again, we’re building models of the world,
and trying our best to check them against the real world: making predictions and
updating them with new information, trying to minimize prediction error. We
have a mental map, and the map is not the territory, but the territory exists, and
if the map is wrong it will send us to the wrong places.

In fact, a Bayesian model like this seems a neat way of thinking about science.
Philosophers of science get bogged down with epistemology. We can’t know
anything for certain; we might be being deceived by an evil demon, we might be
a brain in a jar. We might see a million white swans, but we can’t be sure we’ll
never see a black swan, so can we really ever say, “All swans are white”? It’s easy to
end up in weird places if you go too far, like Paul Feyerabend or Robert Anton-
Wilson saying that all knowledge is impossible. Or Popper saying that there’s no
such thing as confirming a theory, only disproving it. But obviously knowledge
Zs possible, or at least we can make reliable predictions of the world. I very
confidently predict that an airplane will take off and land successfully thanks to
the laws of aerodynamics.



But it’s very straightforward with Bayes. I have a hypothesis about what
percentage of swans are white, and I test it against the evidence. Maybe I start by
estimating that 50 percent of swans are white, but as I see more and more white
swans, I push my probability distribution until I have quite a lot of my
probability mass on “All swans are white.” But I never get to total certainty, just
as Thomas Bayes gets more confidence in the whereabouts of the white ball as
more and more red ones are thrown, without ever being sure.

Then, if I see counterexamples, it immediately becomes far less likely that all
swans are white (although not impossible: maybe I hallucinated) and makes me
move my probability distribution along. We’re not forced into strange
postmodern positions where all models of the world are equally valid; we can be
empirical, we can say that the heliocentric model of the solar system predicts the
world more accurately than the geocentric model or that the most-swans-are-
white hypothesis is closer to the truth than the all-swans hypothesis. But we’re
comfortable with uncertainty, with never saying we have the absolute final
answer.

Whether that means we ought to do the statistics of science in a Bayesian way
is a separate question. I don’t think it would solve every problem, and it’s
probably more appropriate in some places than others—as Daniél Lakens said,
when you get five-sigma results from the Large Hadron Collider, your priors
don’t matter all that much. But it does avoid some of the problems of
frequentist science, and once again it lets us think in terms of how confident we
are in some hypothesis, rather than simply accepting or rejecting it. And it has an
aesthetically pleasing neatness to it.

But perhaps this is all a bit theoretical. Your brain does what it does, and
science can use whatever statistics it feels most comfortable with. But I think
there are lessons we can all draw from Bayesianism: practical benefits we can gain
from taking some of the ideas and employing them in our lives. I'm not saying
run Bayes’ rule over every belief, but keep a couple of things in mind.

First, you don’t need to think so much in terms of right and wrong, true or
false. You can think in terms of how confident you are in a belief, and adjust it
up and down, rather than rejecting or accepting it at some arbitrary threshold.



Most of us either believe things or we don’t. And that means when evidence
comes in that contradicts some belief, we have to either reject the evidence or
change the belief. But if we think in terms of percentage probabilities, we can
incorporate new evidence, allow it to move our probability distribution up or
down.

And the opposite is true. When we read some new scientific study, say,
claiming that red wine causes cancer, then we don’t have to just believe or
disbelieve it. We can think, “What’s my prior probability? How likely do I think
this is?” Maybe you don’t need to use explicit percentage probabilities, but you
can use your own knowledge of the world, and allow the new information to
adjust it, rather than being blown here and there with every new piece of
information.

One thing I find Bayesianism particularly useful for is short-circuiting
arguments about whether someone is lucky or skillful. Warren Buffett has made
a lot of money investing in the stock market. Does that make him a good
investor? Or has he just got lucky? Or Bill Ackman. He’s made something like
$4.5 billion. The same in sports: Is a golfer or a tennis player lucky to have won?
If I intend to sink a pool shot, and then I do, can I claim it was skill?

If you’re allowed to think in Bayesian terms, you avoid this unnecessary
binary. With no information at all, my prior is that any given investor will be
somewhat worse than the stock market at picking stocks. But each time that
investor successfully picks one—or each time a golfer makes par or wins a
tournament—I upgrade my confidence in their skill and reduce the probability
that they just got lucky. Perhaps Warren Buffett has been consistently lucky for
fifty years, but I suspect it’s unlikely.

The idea that beliefs are predictions is key, as well. Remembering that allows
you to sidestep an awful lot of the worst arguments in the world. For instance: A
lot of ink gets spilled on the question “Is cancel culture real?” But most of the
people arguing it agree on the actual facts at hand—some people have lost their
jobs over things they said on the internet—and just disagree on whether those
facts deserve to be called “cancel culture.” If you agreed that “cancel culture” was
real, or wasn’t, would that change any predictions that you make about the
future? What prediction error could you experience that would make you up- or



downgrade your confidence in that belief? If there isn’t one, then maybe you’re
just arguing about the definition of a word, rather than about any real claim
about things out there in the universe, and you can forget about it and start
talking about more concrete things instead.

And you’ll start to notice that an awful lot of arguments—in the real world
between friends, and in the media, and online—are about whether we should
use some word to describe some set of phenomena: Is it woke? Is it racist? Is it
eugenics? But very often, nothing hinges on the outcome of the argument
beyond the label you get to attach to something. Perhaps that’s useful if you
want to win some argument or gather support for some political action, like
banning something, but it doesn’t change the predictions you make about the
world.

As we said at the beginning: you can predict the future. You do it every single
second. You’re doing it at a micro-level, and have to, if you are to successfully
navigate the world and not trip every time you try to walk. You’re doing it at a
very high level when you book a holiday for next year and predict that Lanzarote
will still exist and that Jet2’s Airbus will fly you there. And you’re doing it in all
sorts of intermediate ways, when you go to a store predicting that they’ll have
craft IPA or chocolate cookies, or when you avoid mentioning your friend’s
recent divorce because you predict it will upset them. There’s nothing mystical
about it: that’s just how we work. Humans are prediction machines. And
Thomas Bayes showed us the math of how we do it.
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